|/O Management

Amir H. Payberah
payberah@kth.se
2022

Overview

» |/O management is a major component of OS design and operation.

Overview

» |/O management is a major component of OS design and operation.

» Ports, busses, device controllers connect to various devices.

Overview

» |/O management is a major component of OS design and operation.

» Ports, busses, device controllers connect to various devices.

» Device drivers encapsulate device details.
e Present uniform device-access interface to |/O subsystem.

1/O Hardware

|/O Hardware

» Variety of 1/0 devices:
o Storage, e.g., disks, tapes
e Transmission, e.g., network connections, bluetooth
e Human-interface, e.g., screen, keyboard, mouse, audio in and out

|/O Hardware

» Variety of 1/0 devices:
o Storage, e.g., disks, tapes
e Transmission, e.g., network connections, bluetooth
e Human-interface, e.g., screen, keyboard, mouse, audio in and out

» We only need to understand how the devices are attached and how the
software can control the hardware.

Common Concepts in |/O Hardware

» Port: connection point for device.

Common Concepts in |/O Hardware

» Port: connection point for device.

» Bus: set of wires and protocols that specify the messages that can be
sent on the wires.

Common Concepts in |/O Hardware

» Port: connection point for device.

» Bus: set of wires and protocols that specify the messages that can be
sent on the wires.

» Controller: integrated or separate circuit board that operate a port, a
bus, or a device.

» Device I/O ports addresses on PCs.

1/0 address range (hexadecimal) device
000-00F DMA controller
020021 interrupt controller
040-043 timer
200-20F game controller
2F8—2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

» PCI bus: connects the processor-memory subsystem to fast devices.

‘ monitor ‘ ‘ processor ‘

| o]
graphics bridge/memory -
‘ controller | controller memory
] L i L—PCle bus ,)
expansion bus -
SAS controller ‘ i rface keyboard

Sooo s

i

UsB UsB
port port

» PCI bus: connects the processor-memory subsystem to fast devices.

» Expansion bus: connects relatively slow devices.

‘ monitor ‘ ‘ processor ‘

| o]
graphics bridge/memory -
‘ controller | controller memory
] L i L—PCle bus ,)
expansion bus -
SAS controller ‘ i rface keyboard

Sooo s

i

UsB UsB
port port

» PCI bus: connects the processor-memory subsystem to fast devices.

» Expansion bus: connects relatively slow devices.

» Serial-attached SCSI (SAS)

‘ monitor ‘ ‘ processor ‘
| o]
graphics bridge/memory
controller controller
] L T L—PCle bus ,

l

SAS controller

expansion bus
|nterface

(0

bus

-)

6666

USB
port

UsB
port

Host-Device Interaction

Host-Device Interaction

> Polling

> Interrupt

» Direct memory access (DMA)

Polling (1/2)

» A handshake between the host and a controller.

Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination: busy and command-ready bits.

Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination: busy and command-ready bits.

» For each byte of I/O:
1. Host reads the busy bit from the status register until 0.

Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination: busy and command-ready bits.

» For each byte of I/O:
1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out
register.

Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination: busy and command-ready bits.

» For each byte of I/O:

1. Host reads the busy bit from the status register until 0.

2. Host sets the write bit and if write copies data into the data-out
register.

3. Host sets the command-ready bit.

Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination: busy and command-ready bits.

» For each byte of 1/0:

Host reads the busy bit from the status register until 0.

Host sets the write bit and if write copies data into the data-out
register.

Host sets the command-ready bit.

Controller sets the busy bit, executes transfer.

1.
2.

Polling (1/2)

» A handshake between the host and a controller.
» Assume 2 bits for coordination: busy and command-ready bits.
» For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.
Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

=

Polling (2/2)

» Step 1 is busy-wait cycle (polling) to wait for 1/O from device.

Polling (2/2)

» Step 1 is busy-wait cycle (polling) to wait for 1/O from device.

» Reasonable if device is fast.

Polling (2/2)

» Step 1 is busy-wait cycle (polling) to wait for 1/O from device.

» Reasonable if device is fast.

» But inefficient if device slow.

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.
(1) read status, (2) extract status bit, and (3) branch if not zero.

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.

(1) read status, (2) extract status bit, and (3) branch if not zero.
¢ Inefficient, but more efficient way?

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.

(1) read status, (2) extract status bit, and (3) branch if not zero.
¢ Inefficient, but more efficient way?

» CPU interrupt-request line is triggered by I/O device.

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.

(1) read status, (2) extract status bit, and (3) branch if not zero.
¢ Inefficient, but more efficient way?

» CPU interrupt-request line is triggered by I/O device.

e Checked by processor after each instruction.

Interrupts (1/3)

» Polling can happen in 3 instruction cycles.

(1) read status, (2) extract status bit, and (3) branch if not zero.
¢ Inefficient, but more efficient way?

» CPU interrupt-request line is triggered by I/O device.

e Checked by processor after each instruction.
e Saves state and jumps to interrupt-handler routine at a fixed address in
memory.

Interrupts (2/3)

—]

device driver initiates /O

CPU executing checks for

interrupts between instructions
'

¥

initiates /O

CPU receiving interrupt,
transfers control to
interrupt handler

E

input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes data,
returns from interrupt

E

CPU resumes
processing of
interrupted task

Interrupts (3/3)

» The interrupt mechanism accepts an address: a number that selects a
specific interrupt-handling routine.

vector number description

0 divide error

1 debug exception

2 null interrupt

3 breakpoint

4 INTO-detected overflow

5 bound range exception

6 invalid opcode

7 device not available

8 double fault

9 coprocessor segment overrun (reserved)
10 invalid task state segment
1 segment not present
12 stack fault
13 general protection

14 page fault

15 (Intel reserved, do not use)
16 floating-point error

17 alignment check

18 machine check

19-31 (Intel reserved, do not use)
32-255 maskable interrupts

Sl Direct Memory Access (DMA)

1. device driver is told to transfer drive2

» Bypasses CPU to transfer data data S o buffe a acdress " cru
directly between 1/O device and
memory. cache

2. device driver tells drive
controller to transfer “c” bytes to
buffer at address “x”

5. when c = 0, DMA interrupts
CPU to signal transfer
completion

3. drive controller initiates DMA transfer

SAS drive controller

4. DMA controller transfers bytes to buffer
“x”, increasing memory address and
decreasing “c” untilc =0

Application |/O Interface

Application |/O Interface

» 1/0O system calls encapsulate device behaviors in generic classes.

Application |/O Interface

» 1/0O system calls encapsulate device behaviors in generic classes.

» Device-driver layer hides differences among 1/O controllers from kernel.

Application |/O Interface

» 1/0O system calls encapsulate device behaviors in generic classes.

» Device-driver layer hides differences among 1/O controllers from kernel.

» Each OS has its own |/O subsystem structures and device driver frame-
works.

o
1 A Kernel |/O Structure

gﬁ,%&(S

kernel
[0
]
E kernel /0 subsystem
&
ScCSi keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
ScCsiI keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
° controller | controller | controller controller | controller | controller
@
s Lt [[|
2 ATAPI
scsl floppy- devices
devi keyboard| | mouse see PCI bus disk (disks
evices il d
rives tapes,
drives)

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions

o Data-transfer mode: character or block

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions

e Data-transfer mode: character or block
e Access method: sequential or random-access

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions

e Data-transfer mode: character or block
e Access method: sequential or random-access
e Transfer schedule: synchronous or asynchronous (or both)

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions
e Data-transfer mode: character or block
e Access method: sequential or random-access
e Transfer schedule: synchronous or asynchronous (or both)
e Sharing: sharable or dedicated

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions
o Data-transfer mode: character or block

e Access method: sequential or random-access

e Transfer schedule: synchronous or asynchronous (or both)
e Sharing: sharable or dedicated

» Device speed: speed of operation

Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions
o Data-transfer mode: character or block

e Access method: sequential or random-access

e Transfer schedule: synchronous or asynchronous (or both)
e Sharing: sharable or dedicated

» Device speed: speed of operation

 1/O direction: read-write, read only, or write only

Characteristics of 1/O Devices (2/2)

aspect variation example

R R G character terminal
block disk

access method sequential modem
random CD-ROM
synchronous tape

iR SRR asynchronous keyboard

; dedicated tape

sharing sharable keyboard

device speed latency
seek time
transfer rate
delay between opeﬁptions
read only CD-ROM

1/0 direction write only graphics controller
read—write disk

Character Devices

» Character devices include keyboards, mouse, serial ports.

Character Devices

» Character devices include keyboards, mouse, serial ports.

» A character device transfers bytes one by one.

Character Devices

» Character devices include keyboards, mouse, serial ports.

» A character device transfers bytes one by one.

» Commands include get () and put ().

Block Devices

» Block devices include disk drives.

Block Devices

» Block devices include disk drives.

» Commands include read () and write() and seek() for random-access
devices.

Network Devices

» Varying enough from block and character to have own interface.

Network Devices

» Varying enough from block and character to have own interface.

» Linux, Unix, Windows and many others include socket interface.

» Separates network protocol from network operation.

Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X at
time T)

Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X at
time T)

» Programmable interval timer, the hardware used for timings, and periodic
interrupts.

Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X at
time T)

» Programmable interval timer, the hardware used for timings, and periodic
interrupts.

» Normal resolution about 1/60 second.

Clocks and Timers

v

Provide current time, elapsed time, and timer (trigger operation X at
time T)

v

Programmable interval timer, the hardware used for timings, and periodic
interrupts.

v

Normal resolution about 1/60 second.

\4

Some systems provide higher-resolution timers.

Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/0O completed
¢ Insufficient for some needs

Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/0O completed
¢ Insufficient for some needs

» Nonblocking: 1/0 call returns as much as available
e User interface, data copy (buffered 1/0)

Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/0O completed
¢ Insufficient for some needs

» Nonblocking: 1/0 call returns as much as available

e User interface, data copy (buffered 1/0)
¢ Implemented via multi-threading

Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/0O completed
¢ Insufficient for some needs

» Nonblocking: 1/0 call returns as much as available

e User interface, data copy (buffered 1/0)
¢ Implemented via multi-threading
» select() to find if data ready then read() or write() to transfers.

Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/0O completed
¢ Insufficient for some needs

» Nonblocking: 1/0 call returns as much as available

e User interface, data copy (buffered 1/0)
¢ Implemented via multi-threading
» select() to find if data ready then read() or write() to transfers.

» Asynchronous: process runs while |/O executes

* 1/O subsystem signals process when |/O completed.

Synchronous vs. Asynchronous 1/0O Methods

requesting process requesting process

user land I """"""" Waiting------_.....‘ \ I ? ?

kernel device driver device driver

interrupt handler interrupt handler ‘
|

time =————————— time =—————————
(a) (b)

Synchronous Asynchronous

Kernel 1/O Subsystem

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:
» Scheduling

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:

» Scheduling
» Buffering

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:
» Scheduling
» Buffering
e Caching

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:

» Scheduling
» Buffering
e Caching

e Spooling

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:

» Scheduling

» Buffering

e Caching

e Spooling

¢ Device reservation

Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:

» Scheduling

» Buffering

e Caching

e Spooling

e Device reservation
e Error handling

Scheduling (1/2)

» Determine a good order in which to execute 1/0 requests.

Scheduling (1/2)

» Determine a good order in which to execute 1/0 requests.

» Some |/O request ordering via per-device queue.

Scheduling (1/2)

» Determine a good order in which to execute 1/0 requests.

» Some |/O request ordering via per-device queue.

» Some OSs try fairness.

Scheduling (2/2)

» In asynchronous 1/O the kernel must be able to keep track of many 1/0
requests at the same time.

Scheduling (2/2)

» In asynchronous 1/O the kernel must be able to keep track of many 1/0
requests at the same time.

» The OS attaches the wait queue to a device-status table.

device: keyboard
status: idle
device: laser printer {:g:l'e::i:\(:;r ES
tatus: bt
e address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
dovoe: ok uit2 | [cquostor 1| requestior T L
SLEE) disk unit 2 disk unit 2
file: xxx file: yyy
lion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

Scheduling (2/2)

» In asynchronous 1/O the kernel must be able to keep track of many 1/0
requests at the same time.
» The OS attaches the wait queue to a device-status table.
 The table contains an entry for each /O device.

device: keyboard

status: idle
device: laser printer {:g:l'e::i:\(:;r S
tatus: bt
e address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
dovoe: ok uit2 | [cquostor 1| requestior T L
SLEE) disk unit 2 disk unit 2
file: xxx file: yyy
lion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

Scheduling (2/2)

» In asynchronous 1/O the kernel must be able to keep track of many 1/0
requests at the same time.
» The OS attaches the wait queue to a device-status table.
 The table contains an entry for each /O device.
* If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

device: keyboard
status: idle
device: laser printer {:g:l'e::i:\(:;r ES
tatus: bt
e address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
dovoe: ok uit2 | [cquostor 1| requestior T L
SLEE) disk unit 2 disk unit 2
file: xxx file: yyy
lion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.
e To cope with device speed mismatch.

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.
e To cope with device speed mismatch.
* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages.

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.

* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages.

¢ To maintain copy semantics.

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.

* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages.

¢ To maintain copy semantics.

» Caching: faster device holding copy of data.

Buffering and Caching

» Buffering: stores data in memory while transferring between devices.
e To cope with device speed mismatch.
* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages.
¢ To maintain copy semantics.

» Caching: faster device holding copy of data.

e Always just a copy
e Key to performance

Spooling and Device Reservation

» Spooling: a buffer that holds output for a device.

* If device can serve only one request at a time, i.e., printing

Spooling and Device Reservation

» Spooling: a buffer that holds output for a device.
* If device can serve only one request at a time, i.e., printing

» Device reservation: provides exclusive access to a device.

e System calls for allocation and de-allocation
* Watch out for deadlock

Error Handling

» OS can recover from disk read, device unavailable, and transient write
failures.

Error Handling

» OS can recover from disk read, device unavailable, and transient write
failures.

e Retry a read or write.

Error Handling

» OS can recover from disk read, device unavailable, and transient write
failures.

e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency of
retry-able errors.

Error Handling

» OS can recover from disk read, device unavailable, and transient write
failures.
e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency of
retry-able errors.

» Most return an error number when 1/0 request fails.

Error Handling

» OS can recover from disk read, device unavailable, and transient write
failures.
e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency of
retry-able errors.

» Most return an error number when 1/0 request fails.

» System error logs hold problem reports.

|/O Protection

» A user process may accidentally or purposefully attempt to disrupt normal
operation via illegal |/O instructions.

|/O Protection

» A user process may accidentally or purposefully attempt to disrupt normal
operation via illegal |/O instructions.

» |/O must be performed via system calls.

@ trap to kernel sjstenicalln

return to

user land calling thread

kernel

perform /0

Summary

Summary

» |/O hardware: port, bus, controller

Summary

» |/O hardware: port, bus, controller

» Host-device interaction: polling, interrupt, DMA

Summary

» |/O hardware: port, bus, controller

» Host-device interaction: polling, interrupt, DMA

» Devices: char, block, network

Summary

» |/O hardware: port, bus, controller

» Host-device interaction: polling, interrupt, DMA

» Devices: char, block, network

» Kernel |/0O: schedulling, buffering, caching, spooling, device reservation,

error handling

Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

