
I/O Management

Amir H. Payberah
payberah@kth.se

2022



Overview

I I/O management is a major component of OS design and operation.

I Ports, busses, device controllers connect to various devices.

I Device drivers encapsulate device details.
• Present uniform device-access interface to I/O subsystem.

1 / 36



Overview

I I/O management is a major component of OS design and operation.

I Ports, busses, device controllers connect to various devices.

I Device drivers encapsulate device details.
• Present uniform device-access interface to I/O subsystem.

1 / 36



Overview

I I/O management is a major component of OS design and operation.

I Ports, busses, device controllers connect to various devices.

I Device drivers encapsulate device details.
• Present uniform device-access interface to I/O subsystem.

1 / 36



I/O Hardware

2 / 36



I/O Hardware

I Variety of I/O devices:
• Storage, e.g., disks, tapes
• Transmission, e.g., network connections, bluetooth
• Human-interface, e.g., screen, keyboard, mouse, audio in and out

I We only need to understand how the devices are attached and how the
software can control the hardware.

3 / 36



I/O Hardware

I Variety of I/O devices:
• Storage, e.g., disks, tapes
• Transmission, e.g., network connections, bluetooth
• Human-interface, e.g., screen, keyboard, mouse, audio in and out

I We only need to understand how the devices are attached and how the
software can control the hardware.

3 / 36



Common Concepts in I/O Hardware

I Port: connection point for device.

I Bus: set of wires and protocols that specify the messages that can be
sent on the wires.

I Controller: integrated or separate circuit board that operate a port, a
bus, or a device.

4 / 36



Common Concepts in I/O Hardware

I Port: connection point for device.

I Bus: set of wires and protocols that specify the messages that can be
sent on the wires.

I Controller: integrated or separate circuit board that operate a port, a
bus, or a device.

4 / 36



Common Concepts in I/O Hardware

I Port: connection point for device.

I Bus: set of wires and protocols that specify the messages that can be
sent on the wires.

I Controller: integrated or separate circuit board that operate a port, a
bus, or a device.

4 / 36



Port

I Device I/O ports addresses on PCs.

5 / 36



Bus

I PCI bus: connects the processor-memory subsystem to fast devices.

I Expansion bus: connects relatively slow devices.

I Serial-attached SCSI (SAS)

6 / 36



Bus

I PCI bus: connects the processor-memory subsystem to fast devices.

I Expansion bus: connects relatively slow devices.

I Serial-attached SCSI (SAS)

6 / 36



Bus

I PCI bus: connects the processor-memory subsystem to fast devices.

I Expansion bus: connects relatively slow devices.

I Serial-attached SCSI (SAS)

6 / 36



Host-Device Interaction

7 / 36



Host-Device Interaction

I Polling

I Interrupt

I Direct memory access (DMA)

8 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.

2. Host sets the write bit and if write copies data into the data-out
register.

3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.

3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.

4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.

5. Controller clears the busy bit, error bit, and command-ready bit when
transfer done.

9 / 36



Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination: busy and command-ready bits.

I For each byte of I/O:

1. Host reads the busy bit from the status register until 0.
2. Host sets the write bit and if write copies data into the data-out

register.
3. Host sets the command-ready bit.
4. Controller sets the busy bit, executes transfer.
5. Controller clears the busy bit, error bit, and command-ready bit when

transfer done.

9 / 36



Polling (2/2)

I Step 1 is busy-wait cycle (polling) to wait for I/O from device.

I Reasonable if device is fast.

I But inefficient if device slow.

10 / 36



Polling (2/2)

I Step 1 is busy-wait cycle (polling) to wait for I/O from device.

I Reasonable if device is fast.

I But inefficient if device slow.

10 / 36



Polling (2/2)

I Step 1 is busy-wait cycle (polling) to wait for I/O from device.

I Reasonable if device is fast.

I But inefficient if device slow.

10 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.

• (1) read status, (2) extract status bit, and (3) branch if not zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.

• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed address in

memory.

11 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.
• (1) read status, (2) extract status bit, and (3) branch if not zero.

• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.

• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed address in

memory.

11 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.
• (1) read status, (2) extract status bit, and (3) branch if not zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.

• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed address in

memory.

11 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.
• (1) read status, (2) extract status bit, and (3) branch if not zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.

• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed address in

memory.

11 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.
• (1) read status, (2) extract status bit, and (3) branch if not zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.
• Checked by processor after each instruction.

• Saves state and jumps to interrupt-handler routine at a fixed address in
memory.

11 / 36



Interrupts (1/3)

I Polling can happen in 3 instruction cycles.
• (1) read status, (2) extract status bit, and (3) branch if not zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.
• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed address in

memory.

11 / 36



Interrupts (2/3)

12 / 36



Interrupts (3/3)

I The interrupt mechanism accepts an address: a number that selects a
specific interrupt-handling routine.

13 / 36



Direct Memory Access (DMA)

I Bypasses CPU to transfer data
directly between I/O device and
memory.

14 / 36



Application I/O Interface

15 / 36



Application I/O Interface

I I/O system calls encapsulate device behaviors in generic classes.

I Device-driver layer hides differences among I/O controllers from kernel.

I Each OS has its own I/O subsystem structures and device driver frame-
works.

16 / 36



Application I/O Interface

I I/O system calls encapsulate device behaviors in generic classes.

I Device-driver layer hides differences among I/O controllers from kernel.

I Each OS has its own I/O subsystem structures and device driver frame-
works.

16 / 36



Application I/O Interface

I I/O system calls encapsulate device behaviors in generic classes.

I Device-driver layer hides differences among I/O controllers from kernel.

I Each OS has its own I/O subsystem structures and device driver frame-
works.

16 / 36



A Kernel I/O Structure

17 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions

• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block

• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access

• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)

• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated

• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation

• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only

18 / 36



Characteristics of I/O Devices (2/2)

19 / 36



Character Devices

I Character devices include keyboards, mouse, serial ports.

I A character device transfers bytes one by one.

I Commands include get() and put().

20 / 36



Character Devices

I Character devices include keyboards, mouse, serial ports.

I A character device transfers bytes one by one.

I Commands include get() and put().

20 / 36



Character Devices

I Character devices include keyboards, mouse, serial ports.

I A character device transfers bytes one by one.

I Commands include get() and put().

20 / 36



Block Devices

I Block devices include disk drives.

I Commands include read() and write() and seek() for random-access
devices.

21 / 36



Block Devices

I Block devices include disk drives.

I Commands include read() and write() and seek() for random-access
devices.

21 / 36



Network Devices

I Varying enough from block and character to have own interface.

I Linux, Unix, Windows and many others include socket interface.
• Separates network protocol from network operation.

22 / 36



Network Devices

I Varying enough from block and character to have own interface.

I Linux, Unix, Windows and many others include socket interface.
• Separates network protocol from network operation.

22 / 36



Clocks and Timers

I Provide current time, elapsed time, and timer (trigger operation X at
time T)

I Programmable interval timer, the hardware used for timings, and periodic
interrupts.

I Normal resolution about 1/60 second.

I Some systems provide higher-resolution timers.

23 / 36



Clocks and Timers

I Provide current time, elapsed time, and timer (trigger operation X at
time T)

I Programmable interval timer, the hardware used for timings, and periodic
interrupts.

I Normal resolution about 1/60 second.

I Some systems provide higher-resolution timers.

23 / 36



Clocks and Timers

I Provide current time, elapsed time, and timer (trigger operation X at
time T)

I Programmable interval timer, the hardware used for timings, and periodic
interrupts.

I Normal resolution about 1/60 second.

I Some systems provide higher-resolution timers.

23 / 36



Clocks and Timers

I Provide current time, elapsed time, and timer (trigger operation X at
time T)

I Programmable interval timer, the hardware used for timings, and periodic
interrupts.

I Normal resolution about 1/60 second.

I Some systems provide higher-resolution timers.

23 / 36



Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)

• Implemented via multi-threading
• select() to find if data ready then read() or write() to transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.

24 / 36



Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)

• Implemented via multi-threading
• select() to find if data ready then read() or write() to transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.

24 / 36



Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)
• Implemented via multi-threading

• select() to find if data ready then read() or write() to transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.

24 / 36



Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)
• Implemented via multi-threading
• select() to find if data ready then read() or write() to transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.

24 / 36



Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)
• Implemented via multi-threading
• select() to find if data ready then read() or write() to transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.

24 / 36



Synchronous vs. Asynchronous I/O Methods

Synchronous Asynchronous

25 / 36



Kernel I/O Subsystem

26 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:

• Scheduling
• Buffering
• Caching
• Spooling
• Device reservation
• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling

• Buffering
• Caching
• Spooling
• Device reservation
• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering

• Caching
• Spooling
• Device reservation
• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering
• Caching

• Spooling
• Device reservation
• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering
• Caching
• Spooling

• Device reservation
• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering
• Caching
• Spooling
• Device reservation

• Error handling

27 / 36



Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering
• Caching
• Spooling
• Device reservation
• Error handling

27 / 36



Scheduling (1/2)

I Determine a good order in which to execute I/O requests.

I Some I/O request ordering via per-device queue.

I Some OSs try fairness.

28 / 36



Scheduling (1/2)

I Determine a good order in which to execute I/O requests.

I Some I/O request ordering via per-device queue.

I Some OSs try fairness.

28 / 36



Scheduling (1/2)

I Determine a good order in which to execute I/O requests.

I Some I/O request ordering via per-device queue.

I Some OSs try fairness.

28 / 36



Scheduling (2/2)

I In asynchronous I/O the kernel must be able to keep track of many I/O
requests at the same time.

• The OS attaches the wait queue to a device-status table.
• The table contains an entry for each I/O device.
• If the device is busy with a request, the type of request and other

parameters will be stored in the table entry for that device.

29 / 36



Scheduling (2/2)

I In asynchronous I/O the kernel must be able to keep track of many I/O
requests at the same time.

• The OS attaches the wait queue to a device-status table.

• The table contains an entry for each I/O device.
• If the device is busy with a request, the type of request and other

parameters will be stored in the table entry for that device.

29 / 36



Scheduling (2/2)

I In asynchronous I/O the kernel must be able to keep track of many I/O
requests at the same time.

• The OS attaches the wait queue to a device-status table.
• The table contains an entry for each I/O device.

• If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

29 / 36



Scheduling (2/2)

I In asynchronous I/O the kernel must be able to keep track of many I/O
requests at the same time.

• The OS attaches the wait queue to a device-status table.
• The table contains an entry for each I/O device.
• If the device is busy with a request, the type of request and other

parameters will be stored in the table entry for that device.

29 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.

• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages.
• To maintain copy semantics.

I Caching: faster device holding copy of data.

• Always just a copy
• Key to performance

30 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.
• To cope with device speed mismatch.

• To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages.

• To maintain copy semantics.

I Caching: faster device holding copy of data.

• Always just a copy
• Key to performance

30 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.
• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages.

• To maintain copy semantics.

I Caching: faster device holding copy of data.

• Always just a copy
• Key to performance

30 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.
• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages.
• To maintain copy semantics.

I Caching: faster device holding copy of data.

• Always just a copy
• Key to performance

30 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.
• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages.
• To maintain copy semantics.

I Caching: faster device holding copy of data.

• Always just a copy
• Key to performance

30 / 36



Buffering and Caching

I Buffering: stores data in memory while transferring between devices.
• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages.
• To maintain copy semantics.

I Caching: faster device holding copy of data.
• Always just a copy
• Key to performance

30 / 36



Spooling and Device Reservation

I Spooling: a buffer that holds output for a device.
• If device can serve only one request at a time, i.e., printing

I Device reservation: provides exclusive access to a device.
• System calls for allocation and de-allocation
• Watch out for deadlock

31 / 36



Spooling and Device Reservation

I Spooling: a buffer that holds output for a device.
• If device can serve only one request at a time, i.e., printing

I Device reservation: provides exclusive access to a device.
• System calls for allocation and de-allocation
• Watch out for deadlock

31 / 36



Error Handling

I OS can recover from disk read, device unavailable, and transient write
failures.

• Retry a read or write.
• Track error frequencies, stop using device with increasing frequency of

retry-able errors.

I Most return an error number when I/O request fails.

I System error logs hold problem reports.

32 / 36



Error Handling

I OS can recover from disk read, device unavailable, and transient write
failures.

• Retry a read or write.

• Track error frequencies, stop using device with increasing frequency of
retry-able errors.

I Most return an error number when I/O request fails.

I System error logs hold problem reports.

32 / 36



Error Handling

I OS can recover from disk read, device unavailable, and transient write
failures.

• Retry a read or write.
• Track error frequencies, stop using device with increasing frequency of

retry-able errors.

I Most return an error number when I/O request fails.

I System error logs hold problem reports.

32 / 36



Error Handling

I OS can recover from disk read, device unavailable, and transient write
failures.

• Retry a read or write.
• Track error frequencies, stop using device with increasing frequency of

retry-able errors.

I Most return an error number when I/O request fails.

I System error logs hold problem reports.

32 / 36



Error Handling

I OS can recover from disk read, device unavailable, and transient write
failures.

• Retry a read or write.
• Track error frequencies, stop using device with increasing frequency of

retry-able errors.

I Most return an error number when I/O request fails.

I System error logs hold problem reports.

32 / 36



I/O Protection

I A user process may accidentally or purposefully attempt to disrupt normal
operation via illegal I/O instructions.

I I/O must be performed via system calls.

33 / 36



I/O Protection

I A user process may accidentally or purposefully attempt to disrupt normal
operation via illegal I/O instructions.

I I/O must be performed via system calls.

33 / 36



Summary

34 / 36



Summary

I I/O hardware: port, bus, controller

I Host-device interaction: polling, interrupt, DMA

I Devices: char, block, network

I Kernel I/O: schedulling, buffering, caching, spooling, device reservation,
error handling

35 / 36



Summary

I I/O hardware: port, bus, controller

I Host-device interaction: polling, interrupt, DMA

I Devices: char, block, network

I Kernel I/O: schedulling, buffering, caching, spooling, device reservation,
error handling

35 / 36



Summary

I I/O hardware: port, bus, controller

I Host-device interaction: polling, interrupt, DMA

I Devices: char, block, network

I Kernel I/O: schedulling, buffering, caching, spooling, device reservation,
error handling

35 / 36



Summary

I I/O hardware: port, bus, controller

I Host-device interaction: polling, interrupt, DMA

I Devices: char, block, network

I Kernel I/O: schedulling, buffering, caching, spooling, device reservation,
error handling

35 / 36



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

36 / 36


