
File Systems - Part II

Amir H. Payberah
payberah@kth.se

2022



Motivation

I The file system resides permanently on secondary storage.

I How to

• structure file use
• allocate disk space
• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to

• structure file use
• allocate disk space
• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use

• allocate disk space
• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use
• allocate disk space

• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use
• allocate disk space
• recover free space

• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use
• allocate disk space
• recover free space
• track the locations of data

• interface other parts of the OS to secondary storage

1 / 44



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use
• allocate disk space
• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

1 / 44



File System Structure

2 / 44



File System Structure

I Disk provides in-place rewrite and random access

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

3 / 44



File System Structure

I Disk provides in-place rewrite and random access

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

3 / 44



File System Structure

I Disk provides in-place rewrite and random access

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

3 / 44



File System Design Problems

I How the file system should look to the user?

• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto the
physical secondary-storage devices.

4 / 44



File System Design Problems

I How the file system should look to the user?
• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto the
physical secondary-storage devices.

4 / 44



File System Design Problems

I How the file system should look to the user?
• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto the
physical secondary-storage devices.

4 / 44



File System Layers (1/6)

I Different levels

I Each level uses the features of lower
levels to create new features for use
by higher levels.

I Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

5 / 44



File System Layers (1/6)

I Different levels

I Each level uses the features of lower
levels to create new features for use
by higher levels.

I Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

5 / 44



File System Layers (1/6)

I Different levels

I Each level uses the features of lower
levels to create new features for use
by higher levels.

I Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

5 / 44



File System Layers (2/6)

I Device drivers manage I/O devices
at the I/O control layer.

I Translates high-level commands to
low-level hardware-specific instructions.

6 / 44



File System Layers (2/6)

I Device drivers manage I/O devices
at the I/O control layer.

I Translates high-level commands to
low-level hardware-specific instructions.

6 / 44



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and caches.

• Buffers hold data in transit
• Caches hold frequently used data

7 / 44



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and caches.

• Buffers hold data in transit
• Caches hold frequently used data

7 / 44



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and caches.
• Buffers hold data in transit

• Caches hold frequently used data

7 / 44



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and caches.
• Buffers hold data in transit
• Caches hold frequently used data

7 / 44



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

8 / 44



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

8 / 44



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

8 / 44



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management and protection

9 / 44



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management and protection

9 / 44



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management and protection

9 / 44



File System Layers (6/6)

I Many file systems, sometimes many within an OS

I Each with its own format
• CD-ROM: ISO 9660
• Unix: UFS, FFS
• Windows: FAT, FAT32, NTFS
• Linux: more than 40 types, with extended file system (ext2, ext3, ext4)

10 / 44



File System Layers (6/6)

I Many file systems, sometimes many within an OS

I Each with its own format
• CD-ROM: ISO 9660
• Unix: UFS, FFS
• Windows: FAT, FAT32, NTFS
• Linux: more than 40 types, with extended file system (ext2, ext3, ext4)

10 / 44



File System Implementation

11 / 44



The Unix inode

12 / 44



File System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

13 / 44



File System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

13 / 44



File System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

13 / 44



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot OS
from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block pointers
or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

14 / 44



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot OS
from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block pointers
or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

14 / 44



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot OS
from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block pointers
or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

14 / 44



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot OS
from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.
• Total num. of blocks, num. of free blocks, block size, free block pointers

or array
• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

14 / 44



On-Disk File System Structures (2/2)

I Directory structure organizes the files.
• In UFS, this includes file names and associated inode numbers.
• In NTFS, it is stored in the master file table.

I File Control Block (FCB) contains many details about the file.
• In UFS, inode number, permissions, size, dates.
• In NFTS stores into in master file table.

File Control Block (FCB)

15 / 44



On-Disk File System Structures (2/2)

I Directory structure organizes the files.
• In UFS, this includes file names and associated inode numbers.
• In NTFS, it is stored in the master file table.

I File Control Block (FCB) contains many details about the file.
• In UFS, inode number, permissions, size, dates.
• In NFTS stores into in master file table.

File Control Block (FCB)

15 / 44



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently ac-
cessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk or
written to disk.

16 / 44



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently ac-
cessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk or
written to disk.

16 / 44



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently ac-
cessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk or
written to disk.

16 / 44



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently ac-
cessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk or
written to disk.

16 / 44



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently ac-
cessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate entry in
the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk or
written to disk.

16 / 44



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures, and
allocates a new FCB.

I The system, then, reads the appropriate directory into memory, updates
it with the new file name and FCB, and writes it back to the disk.

17 / 44



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures, and
allocates a new FCB.

I The system, then, reads the appropriate directory into memory, updates
it with the new file name and FCB, and writes it back to the disk.

17 / 44



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures, and
allocates a new FCB.

I The system, then, reads the appropriate directory into memory, updates
it with the new file name and FCB, and writes it back to the disk.

17 / 44



Open a File

I The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is already in
use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name: once the file

is found, the FCB is copied into a system-wide open-file table in memory.

I This table stores the FCB as well as the number of processes that have the
file open.

18 / 44



Open a File

I The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is already in
use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name: once the file

is found, the FCB is copied into a system-wide open-file table in memory.

I This table stores the FCB as well as the number of processes that have the
file open.

18 / 44



Open a File

I The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is already in
use by another process.

• If yes: a per-process open-file table entry is created.

• If no: the directory structure is searched for the given file name: once the file
is found, the FCB is copied into a system-wide open-file table in memory.

I This table stores the FCB as well as the number of processes that have the
file open.

18 / 44



Open a File

I The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is already in
use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name: once the file

is found, the FCB is copied into a system-wide open-file table in memory.

I This table stores the FCB as well as the number of processes that have the
file open.

18 / 44



Open a File

I The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is already in
use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name: once the file

is found, the FCB is copied into a system-wide open-file table in memory.

I This table stores the FCB as well as the number of processes that have the
file open.

18 / 44



Read From a File

I The open() returns a pointer to the appropriate entry in the per-process
file-system table.

I All file operations are then performed via this pointer.

I This pointer is called file descriptor in Unix and file handle in Windows.

19 / 44



Read From a File

I The open() returns a pointer to the appropriate entry in the per-process
file-system table.

I All file operations are then performed via this pointer.

I This pointer is called file descriptor in Unix and file handle in Windows.

19 / 44



Read From a File

I The open() returns a pointer to the appropriate entry in the per-process
file-system table.

I All file operations are then performed via this pointer.

I This pointer is called file descriptor in Unix and file handle in Windows.

19 / 44



Close a File

I When a process closes the file:
• The per-process table entry is removed.
• The system-wide entry’s open count is decremented.

I When all users that have opened the file close it, any updated metadata
is copied back to the disk-based directory structure, and the system-wide
open-file table entry is removed.

20 / 44



Close a File

I When a process closes the file:
• The per-process table entry is removed.
• The system-wide entry’s open count is decremented.

I When all users that have opened the file close it, any updated metadata
is copied back to the disk-based directory structure, and the system-wide
open-file table entry is removed.

20 / 44



Virtual File Systems

21 / 44



Virtual File Systems (1/2)

I Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems.

I VFS allows the same system call interface (the API) to be used for
different types of file systems.

22 / 44



Virtual File Systems (1/2)

I Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems.

I VFS allows the same system call interface (the API) to be used for
different types of file systems.

22 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.

• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.

• The kernel maintains one vnode structure for each active node.

23 / 44



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1. It separates file-system-generic operations from their implementation, and
allows transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a net-
work.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

23 / 44



Allocation Methods

24 / 44



Allocation Methods

I How disk blocks are allocated to files?

I Methods:
• Contiguous allocation
• Linked allocation
• Indexed allocation

25 / 44



Allocation Methods

I How disk blocks are allocated to files?

I Methods:
• Contiguous allocation
• Linked allocation
• Indexed allocation

25 / 44



Contiguous Allocation

26 / 44



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.

• Best performance in most cases
• Simple: only starting location (block number) and length (number of

blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

27 / 44



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number of

blocks) are required.

• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

27 / 44



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number of

blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

27 / 44



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number of

blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

27 / 44



Contiguous Allocation (2/2)

28 / 44



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of perfor-
mance

I Knowing file size

29 / 44



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of perfor-
mance

I Knowing file size

29 / 44



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of perfor-
mance

I Knowing file size

29 / 44



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of perfor-
mance

I Knowing file size

29 / 44



Linked Allocation

30 / 44



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

31 / 44



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

31 / 44



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

31 / 44



Linked Allocation (2/2)

32 / 44



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but increases

internal fragmentation.

33 / 44



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but increases

internal fragmentation.

33 / 44



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but increases

internal fragmentation.

33 / 44



Indexed Allocation

34 / 44



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers to its
data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead of
index block

35 / 44



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers to its
data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead of
index block

35 / 44



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers to its
data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead of
index block

35 / 44



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers to its
data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead of
index block

35 / 44



Indexed Allocation (2/2)

36 / 44



Indexed Allocation Problems

I Wasted space: overhead of the index blocks.

I For example, even with a file of only one or two blocks, we need an an
entire index block.

37 / 44



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

38 / 44



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

38 / 44



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

38 / 44



Linked Scheme

I Linked scheme: link blocks of index table (no limit on size)

I For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

I The next address is null or is a pointer to another index block.

39 / 44



Linked Scheme

I Linked scheme: link blocks of index table (no limit on size)

I For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

I The next address is null or is a pointer to another index block.

39 / 44



Multi-Level Index

I Two-level index

I A first-level index block to point to a set of second-level index blocks,
which in turn point to the file blocks.

I Could be continued to a third or fourth level.

40 / 44



Combined Scheme

I Combine scheme: used in Unix/Linux FS

I The first 12 pointers point to direct blocks
• The data for small files do not need a separate index block.

I The next 3 pointers point to indirect blocks.
• Single indirect
• Double indirect
• Triple indirect

41 / 44



Summary

42 / 44



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical FS,
application

I FS implementation:
• On-disk structures: boot control block, volume control block, directory

structure, and file control block
• In-memory structures: mount table, directory structure, open-file tables,

and buffers

I Virtual file system (VFS)

I Allocation methods: contiguous allocation, linked allocation, and indexed
allocation

43 / 44



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical FS,
application

I FS implementation:
• On-disk structures: boot control block, volume control block, directory

structure, and file control block
• In-memory structures: mount table, directory structure, open-file tables,

and buffers

I Virtual file system (VFS)

I Allocation methods: contiguous allocation, linked allocation, and indexed
allocation

43 / 44



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical FS,
application

I FS implementation:
• On-disk structures: boot control block, volume control block, directory

structure, and file control block
• In-memory structures: mount table, directory structure, open-file tables,

and buffers

I Virtual file system (VFS)

I Allocation methods: contiguous allocation, linked allocation, and indexed
allocation

43 / 44



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical FS,
application

I FS implementation:
• On-disk structures: boot control block, volume control block, directory

structure, and file control block
• In-memory structures: mount table, directory structure, open-file tables,

and buffers

I Virtual file system (VFS)

I Allocation methods: contiguous allocation, linked allocation, and indexed
allocation

43 / 44



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

44 / 44


