
File Systems - Part I

Amir H. Payberah
payberah@kth.se

2022



Motivation

1 / 50



Motivation

I The file system (FS) provides mechanism to access data/programs on
storage.

I The FS consists of two distinct parts:

• A collection of files.
• A directory structure that organizes and provides information about all

the files in the system.

2 / 50



Motivation

I The file system (FS) provides mechanism to access data/programs on
storage.

I The FS consists of two distinct parts:

• A collection of files.
• A directory structure that organizes and provides information about all

the files in the system.

2 / 50



Motivation

I The file system (FS) provides mechanism to access data/programs on
storage.

I The FS consists of two distinct parts:
• A collection of files.

• A directory structure that organizes and provides information about all
the files in the system.

2 / 50



Motivation

I The file system (FS) provides mechanism to access data/programs on
storage.

I The FS consists of two distinct parts:
• A collection of files.
• A directory structure that organizes and provides information about all

the files in the system.

2 / 50



File Concept

3 / 50



File Concept

I Contiguous logical address space.

I Various types.

4 / 50



File Concept

I Contiguous logical address space.

I Various types.

4 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Attributes

I Name: only information kept in human-readable form.

I Identifier: unique number identifies file within file system.

I Type: needed for systems that support different types.

I Location: pointer to file location on device.

I Size: current file size.

I Protection: controls who can do reading, writing, executing.

I Time, date, and user identification: data for protection, security, and
usage monitoring.

I Information about files are kept in the directory structure.

5 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Operations

I Create

I Write

I Read

I Delete

I Open(f): move the content of entry f from disk to memory.

I Close(f): move the content of entry f in memory to directory structure
on disk.

6 / 50



File Locks

I File locks allow one process to lock a file and prevent other processes
from gaining access to it.

I Similar to reader-writer locks.

• Shared lock similar to reader lock: several processes can acquire
concurrently

• Exclusive lock similar to writer lock: only one process can acquire it

7 / 50



File Locks

I File locks allow one process to lock a file and prevent other processes
from gaining access to it.

I Similar to reader-writer locks.

• Shared lock similar to reader lock: several processes can acquire
concurrently

• Exclusive lock similar to writer lock: only one process can acquire it

7 / 50



File Locks

I File locks allow one process to lock a file and prevent other processes
from gaining access to it.

I Similar to reader-writer locks.
• Shared lock similar to reader lock: several processes can acquire

concurrently

• Exclusive lock similar to writer lock: only one process can acquire it

7 / 50



File Locks

I File locks allow one process to lock a file and prevent other processes
from gaining access to it.

I Similar to reader-writer locks.
• Shared lock similar to reader lock: several processes can acquire

concurrently
• Exclusive lock similar to writer lock: only one process can acquire it

7 / 50



8 / 50



Files and Their Metadata

I The stat structure: the metadata of a file.

I Defined in <sys/stat.h>.

struct stat {

dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* inode number */

mode_t st_mode; /* permissions */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device ID (if special file) */

off_t st_size; /* total size in bytes */

blksize_t st_blksize; /* blocksize for filesystem I/O */

blkcnt_t st_blocks; /* number of blocks allocated */

time_t st_atime; /* last access time */

time_t st_mtime; /* last modification time */

time_t st_ctime; /* last status change time */

};

9 / 50



Opening and Closing a File

FILE *fopen(const char *filename, const char * mode);

int fclose(FILE *fd);

10 / 50



Writing a File (1/2)

I putc writes a character to a file.

I fputs writes a string to a file.

I fprintp writes a formatted data to a file.

int putc(int c, FILE *fd)

int fputs(const char *str, FILE *fd)

int fprintf(FILE *fd, const char *format, ...)

11 / 50



Writing a File (2/2)

#include <stdio.h>

int main() {

FILE *fd;

fd = fopen("test.txt", "w");

fputs("This is a sample text file.", fd);

fclose(fd);

return 0;

}

12 / 50



Reading From a File (1/2)

I getc reads a character to a file.

I fputs reads a string to a file.

I fscanf read a formatted data to a file.

int getc(FILE *fd)

char *fgets(char *str, int n, FILE *fd)

int fscanf(FILE *fd, const char *format, ...)

13 / 50



Reading From a File (2/2)

#include <stdio.h>

int main(void) {

FILE* fd;

char ch[100];

fd = fopen("myfile.txt", "r");

printf("%s", fgets(ch, 50, fd));

fclose(fd);

return 0;

}

14 / 50



Access Methods

15 / 50



Access Methods - Sequential Access

I Sequential access is based on a tape model of a file.

I Information in the file is processed in order, one record after the other.

I A read operation (read next()): reads the next portion of the file and
automatically advances a file pointer.

I A write operation (write next()): appends to the end of the file and
advances to the end of the newly written material.

16 / 50



Access Methods - Sequential Access

I Sequential access is based on a tape model of a file.

I Information in the file is processed in order, one record after the other.

I A read operation (read next()): reads the next portion of the file and
automatically advances a file pointer.

I A write operation (write next()): appends to the end of the file and
advances to the end of the newly written material.

16 / 50



Access Methods - Sequential Access

I Sequential access is based on a tape model of a file.

I Information in the file is processed in order, one record after the other.

I A read operation (read next()): reads the next portion of the file and
automatically advances a file pointer.

I A write operation (write next()): appends to the end of the file and
advances to the end of the newly written material.

16 / 50



Access Methods - Sequential Access

I Sequential access is based on a tape model of a file.

I Information in the file is processed in order, one record after the other.

I A read operation (read next()): reads the next portion of the file and
automatically advances a file pointer.

I A write operation (write next()): appends to the end of the file and
advances to the end of the newly written material.

16 / 50



Access Methods - Direct Access

I A file is made up of fixed-length logical records that allow programs to
read and write records rapidly in no particular order.

I Immediate access to large amounts of information.
• Databases are often of this type.

I read(n) rather than read next().
• n is the block number.

I write(n) rather than write next().

17 / 50



Access Methods - Direct Access

I A file is made up of fixed-length logical records that allow programs to
read and write records rapidly in no particular order.

I Immediate access to large amounts of information.
• Databases are often of this type.

I read(n) rather than read next().
• n is the block number.

I write(n) rather than write next().

17 / 50



Access Methods - Direct Access

I A file is made up of fixed-length logical records that allow programs to
read and write records rapidly in no particular order.

I Immediate access to large amounts of information.
• Databases are often of this type.

I read(n) rather than read next().
• n is the block number.

I write(n) rather than write next().

17 / 50



Access Methods - Direct Access

I A file is made up of fixed-length logical records that allow programs to
read and write records rapidly in no particular order.

I Immediate access to large amounts of information.
• Databases are often of this type.

I read(n) rather than read next().
• n is the block number.

I write(n) rather than write next().

17 / 50



Directory Structure

18 / 50



Directory Structure

I The directory can be viewed as a symbol table that translates file names
into their directory entries.

I Both the directory structure and the files reside on disk.

19 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Operations Performed on Directory

I Search for a file

I Create a file

I Delete a file

I List a directory

I Rename a file

I Traverse the file system

20 / 50



Directory Organization

I The directory itself can be organized in many ways.

• Single-level directories

• Two-level directories

• Tree-level directories

• Acyclic-graph directories

21 / 50



Directory Organization

I The directory itself can be organized in many ways.

• Single-level directories

• Two-level directories

• Tree-level directories

• Acyclic-graph directories

21 / 50



Directory Organization

I The directory itself can be organized in many ways.

• Single-level directories

• Two-level directories

• Tree-level directories

• Acyclic-graph directories

21 / 50



Directory Organization

I The directory itself can be organized in many ways.

• Single-level directories

• Two-level directories

• Tree-level directories

• Acyclic-graph directories

21 / 50



Directory Organization

I The directory itself can be organized in many ways.

• Single-level directories

• Two-level directories

• Tree-level directories

• Acyclic-graph directories

21 / 50



Single-Level Directory

I A single directory for all users.

I Naming problem: they must have unique names.

I Grouping problem

22 / 50



Single-Level Directory

I A single directory for all users.

I Naming problem: they must have unique names.

I Grouping problem

22 / 50



Single-Level Directory

I A single directory for all users.

I Naming problem: they must have unique names.

I Grouping problem

22 / 50



Two-Level Directory

I Separate directory for each user.

I Can have the same file name for different users.

I Efficient searching

I Path name: two level path, e.g., /userB/file.txt

I No grouping capability

23 / 50



Two-Level Directory

I Separate directory for each user.

I Can have the same file name for different users.

I Efficient searching

I Path name: two level path, e.g., /userB/file.txt

I No grouping capability

23 / 50



Two-Level Directory

I Separate directory for each user.

I Can have the same file name for different users.

I Efficient searching

I Path name: two level path, e.g., /userB/file.txt

I No grouping capability

23 / 50



Two-Level Directory

I Separate directory for each user.

I Can have the same file name for different users.

I Efficient searching

I Path name: two level path, e.g., /userB/file.txt

I No grouping capability

23 / 50



Two-Level Directory

I Separate directory for each user.

I Can have the same file name for different users.

I Efficient searching

I Path name: two level path, e.g., /userB/file.txt

I No grouping capability

23 / 50



Tree-Structured Directories

I Efficient searching and grouping capability

I Current directory (working directory)
• cd /spell/mail/prog

I Two types of path names:

• Absolute path name: a path from
the root.

• Relative path name: a path from
the current directory.

24 / 50



Tree-Structured Directories

I Efficient searching and grouping capability

I Current directory (working directory)
• cd /spell/mail/prog

I Two types of path names:

• Absolute path name: a path from
the root.

• Relative path name: a path from
the current directory.

24 / 50



Tree-Structured Directories

I Efficient searching and grouping capability

I Current directory (working directory)
• cd /spell/mail/prog

I Two types of path names:

• Absolute path name: a path from
the root.

• Relative path name: a path from
the current directory.

24 / 50



Tree-Structured Directories

I Efficient searching and grouping capability

I Current directory (working directory)
• cd /spell/mail/prog

I Two types of path names:
• Absolute path name: a path from

the root.

• Relative path name: a path from
the current directory.

24 / 50



Tree-Structured Directories

I Efficient searching and grouping capability

I Current directory (working directory)
• cd /spell/mail/prog

I Two types of path names:
• Absolute path name: a path from

the root.
• Relative path name: a path from

the current directory.

24 / 50



Acyclic-Graph Directories (1/3)

I Have shared subdirectories and files.

I Only one actual file exists with a shared file., so any changes made by
one person are immediately visible to the other.

25 / 50



Acyclic-Graph Directories (1/3)

I Have shared subdirectories and files.

I Only one actual file exists with a shared file., so any changes made by
one person are immediately visible to the other.

25 / 50



Acyclic-Graph Directories (2/3)

I Two approaches to implement shared files.

I 1. Duplicate all information about the file.

• Both entries are identical and equal.
• Consistency?

I 2. Link: another name (pointer) to an existing file.

• Resolve the link: follow pointer to locate the file.

26 / 50



Acyclic-Graph Directories (2/3)

I Two approaches to implement shared files.

I 1. Duplicate all information about the file.

• Both entries are identical and equal.
• Consistency?

I 2. Link: another name (pointer) to an existing file.

• Resolve the link: follow pointer to locate the file.

26 / 50



Acyclic-Graph Directories (2/3)

I Two approaches to implement shared files.

I 1. Duplicate all information about the file.
• Both entries are identical and equal.
• Consistency?

I 2. Link: another name (pointer) to an existing file.

• Resolve the link: follow pointer to locate the file.

26 / 50



Acyclic-Graph Directories (2/3)

I Two approaches to implement shared files.

I 1. Duplicate all information about the file.
• Both entries are identical and equal.
• Consistency?

I 2. Link: another name (pointer) to an existing file.

• Resolve the link: follow pointer to locate the file.

26 / 50



Acyclic-Graph Directories (2/3)

I Two approaches to implement shared files.

I 1. Duplicate all information about the file.
• Both entries are identical and equal.
• Consistency?

I 2. Link: another name (pointer) to an existing file.
• Resolve the link: follow pointer to locate the file.

26 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.

• Dangling pointers: pointing to the nonexistent file.
• What if the remaining file pointers contain actual disk addresses?
• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.

• Dangling pointers: pointing to the nonexistent file.
• What if the remaining file pointers contain actual disk addresses?
• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.
• Dangling pointers: pointing to the nonexistent file.

• What if the remaining file pointers contain actual disk addresses?
• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.
• Dangling pointers: pointing to the nonexistent file.
• What if the remaining file pointers contain actual disk addresses?

• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.
• Dangling pointers: pointing to the nonexistent file.
• What if the remaining file pointers contain actual disk addresses?
• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



Acyclic-Graph Directories (3/3)

I Deletion possibilities?

I Remove the file content whenever anyone deletes it.
• Dangling pointers: pointing to the nonexistent file.
• What if the remaining file pointers contain actual disk addresses?
• Easy with soft-links (symbolic links)

I Preserve the file until all references to it are deleted.
• Hard links

27 / 50



28 / 50



Linux File System

29 / 50



/bin

I Hold the most commonly used essential user programs.
• login
• Shells (bash, ksh, csh)
• File manipulation utilities (cp, mv, rm, ln, tar)
• Editors (ed, vi)
• File system utilities (dd, df, mount, umount, sync)
• System utilities (uname, hostname, arch)
• GNU utilities (gzip, gunzip)

30 / 50



/sbin

I Hold essential maintenance or system programs:
• fsck, fdisk, mkfs, shutdown, init, ...

I The main difference between the programs stored in /bin and /sbin is
that the programs in /sbin are executable only by root.

31 / 50



/sbin

I Hold essential maintenance or system programs:
• fsck, fdisk, mkfs, shutdown, init, ...

I The main difference between the programs stored in /bin and /sbin is
that the programs in /sbin are executable only by root.

31 / 50



/etc

I Store the system wide configuration files required by many programs:
• passwd, shadow, fstab, hosts, ...

32 / 50



/home and /root

I The /home directory: the home directories for all users.

I The /root directory: the home directories for root user.

33 / 50



/dev

I The special files representing hardware are kept in it.
• /dev/hda1
• /dev/ttyS0
• /dev/mouse
• /dev/fd0
• /dev/fifo1
• /dev/loop2

34 / 50



/tmp and /var

I The /tmp and /var directories: hold temporary files or files with con-
stantly varying content.

I The /tmp directory: files that only need to be used briefly and can afford
to be deleted at any time.

I The /var directory: a bit more structured than /tmp.

35 / 50



/tmp and /var

I The /tmp and /var directories: hold temporary files or files with con-
stantly varying content.

I The /tmp directory: files that only need to be used briefly and can afford
to be deleted at any time.

I The /var directory: a bit more structured than /tmp.

35 / 50



/tmp and /var

I The /tmp and /var directories: hold temporary files or files with con-
stantly varying content.

I The /tmp directory: files that only need to be used briefly and can afford
to be deleted at any time.

I The /var directory: a bit more structured than /tmp.

35 / 50



/usr

I Most programs and files directly relating to users of the system are stored.

I It is in some ways a mini version of the / directory.
• /usr/bin
• /usr/sbin
• /usr/spool

36 / 50



/proc

I It is a virtual file system

I Provided by the kernel

I Provides information about the kernel and processes.

37 / 50



File and Directory Management

I getcwd() returns the current working directory.

I chdir() changes the current working directory to path

#include <unistd.h>

char *getcwd(char *buf, size_t size);

int chdir(const char *path);

38 / 50



File and Directory Management

I mkdir() creates the directory path.

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *path, mode_t mode);

I rmdir() removes a directory from the filesystem.

#include <unistd.h>

int rmdir(const char *path);

39 / 50



File and Directory Management

I mkdir() creates the directory path.

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *path, mode_t mode);

I rmdir() removes a directory from the filesystem.

#include <unistd.h>

int rmdir(const char *path);

39 / 50



File and Directory Management

I opendir() creates a directory stream representing.

I readdir() returns the next entry in the directory.

I closedir() closes the directory stream.

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);;

struct dirent *readdir(DIR *dir);

int closedir(DIR *dir);

40 / 50



File System Commands (1/3)

I pwd: where am I?

I cd: changes working directory.

I ls: shows the contents of current directory.

I cat: takes all input and outputs it to a file or other source.

I mkdir: creates a new directory

I rmdir: removes empty directory

41 / 50



File System Commands (2/3)

I mv: moves files

I cp: copies files

I rm: removes directory

I gzip/gunzip: to compress and uncompress a file

I tar: to compress and uncompress a file

I e2fsck: check a Linux ext2/ext3/ext4 file system

42 / 50



File System Commands (3/3)

I dd: converts and copies a file

I df: reports File System disk space usage

I du: estimates file space usage

I ln: makes links between files

I file: determines file type

43 / 50



File Sharing and Protection

44 / 50



File Sharing

I Sharing of files on multi-user systems is desirable.

I Sharing may be done through a protection scheme.

• User IDs identify user
• Owner of a file/directory: the user who can change attributes and grant

access and who has the most control over the file.
• Group of a file/directory: a subset of users who can share access to the

file.

45 / 50



File Sharing

I Sharing of files on multi-user systems is desirable.

I Sharing may be done through a protection scheme.

• User IDs identify user
• Owner of a file/directory: the user who can change attributes and grant

access and who has the most control over the file.
• Group of a file/directory: a subset of users who can share access to the

file.

45 / 50



File Sharing

I Sharing of files on multi-user systems is desirable.

I Sharing may be done through a protection scheme.
• User IDs identify user

• Owner of a file/directory: the user who can change attributes and grant
access and who has the most control over the file.

• Group of a file/directory: a subset of users who can share access to the
file.

45 / 50



File Sharing

I Sharing of files on multi-user systems is desirable.

I Sharing may be done through a protection scheme.
• User IDs identify user
• Owner of a file/directory: the user who can change attributes and grant

access and who has the most control over the file.

• Group of a file/directory: a subset of users who can share access to the
file.

45 / 50



File Sharing

I Sharing of files on multi-user systems is desirable.

I Sharing may be done through a protection scheme.
• User IDs identify user
• Owner of a file/directory: the user who can change attributes and grant

access and who has the most control over the file.
• Group of a file/directory: a subset of users who can share access to the

file.

45 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:

• Owner: the user who created the file.
• Group: a set of users who are sharing the file and need similar access.
• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:

• Owner: the user who created the file.
• Group: a set of users who are sharing the file and need similar access.
• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:
• Owner: the user who created the file.

• Group: a set of users who are sharing the file and need similar access.
• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:
• Owner: the user who created the file.
• Group: a set of users who are sharing the file and need similar access.

• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:
• Owner: the user who created the file.
• Group: a set of users who are sharing the file and need similar access.
• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (1/2)

I Mode of access: read, write, execute (rwx)

I Three classes of users:
• Owner: the user who created the file.
• Group: a set of users who are sharing the file and need similar access.
• Universe: all other users in the system.

I Owner access rwx: 111 (7)
Group access rwx: 110 (6)
Public access rwx: 001 (1)

46 / 50



Access Lists and Groups (2/2)

47 / 50



Summary

48 / 50



Summary

I File concept: types, attributes, operations, locks

I Access methods: sequential, direct

I Directory structure: single-level, two-level, tree-structured, acyclic-graph,
general-graph

I File sharing and protection: rwx, owner, group, universe

49 / 50



Summary

I File concept: types, attributes, operations, locks

I Access methods: sequential, direct

I Directory structure: single-level, two-level, tree-structured, acyclic-graph,
general-graph

I File sharing and protection: rwx, owner, group, universe

49 / 50



Summary

I File concept: types, attributes, operations, locks

I Access methods: sequential, direct

I Directory structure: single-level, two-level, tree-structured, acyclic-graph,
general-graph

I File sharing and protection: rwx, owner, group, universe

49 / 50



Summary

I File concept: types, attributes, operations, locks

I Access methods: sequential, direct

I Directory structure: single-level, two-level, tree-structured, acyclic-graph,
general-graph

I File sharing and protection: rwx, owner, group, universe

49 / 50



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

50 / 50


