
Virtual Memory

Amir H. Payberah
payberah@kth.se

2022



Motivation

I A program needs to be in memory to execute.

I But, entire program rarely used (e.g., unusual routines, large data structures).

I Only part of the program needs to be in memory for execution.

I More programs running concurrently.

1 / 45



Virtual Memory

I Separation of user logical memory from physical memory.

I Logical address space can be much larger than physical address space.

2 / 45



Virtual Address Space (1/2)

I Virtual address space: logical view of how process is stored in memory.

I Meanwhile, physical memory organized in page frames.

I MMU must map logical to physical.

3 / 45



Virtual Address Space (2/2)

I The hole between heap and stack is part of the
virtual address space, but will require actual
physical pages only if the heap or stack grows.

4 / 45



Demand Paging

5 / 45



Demand-Paging

I Demand-paging: bring a page into memory only when it is needed.

I lazy swapper.

6 / 45



Basic Concepts

I The pager guesses which pages will be used
again before swapping out.

I Valid-invalid bit: distinguish between the
pages in memory and on disk.
v: memory resident
i: not in memory

7 / 45



Page Fault

I Access to a page marked invalid causes a page fault.

I Causing a trap to the OS: brings the desired page into memory.

8 / 45



Handling Page Fault (1/6)

I Check an internal table for the process to determine whether the reference
was a valid or an invalid memory access.

9 / 45



Handling Page Fault (2/6)

I If the reference was invalid, we terminate the process.

I If it was valid but we have not yet brought in that page, we now page it in.

10 / 45



Handling Page Fault (3/6)

I We find a free frame.

11 / 45



Handling Page Fault (4/6)

I We schedule a disk operation to read the desired page into the newly allo-
cated frame.

12 / 45



Handling Page Fault (5/6)

I When the disk read is complete, we modify the internal table kept with the
process and the page table to indicate that the page is now in memory.

13 / 45



Handling Page Fault (6/6)

I We restart the instruction that was interrupted by the trap.

14 / 45



Page Replacement

15 / 45



What Happens if There is no Free Frame?

I Assume, we had 40 frames in physical memory.

I And, we run 6 processes, each of which is 10 pages in size, but actually
uses only 5 pages.

I It is possible that each of these processes may suddenly try to use all 10
of its pages: resulting in a need for 60 frames when only 40 are available.

I Increasing the degree of multiprogramming: over-allocating memory

16 / 45



Over-Allocation of Memory

I While a user process is executing, a page fault occurs.

I The OS determines where the desired page is residing on the disk.

I But, it finds that there are no free frames on the free-frame list.

I Need for page replacement

17 / 45



Need For Page Replacement

18 / 45



Page Replacement (1/4)

I Find the location of the desired page on disk.

19 / 45



Page Replacement (2/4)

I Find a free frame.
• If there is a free frame, use it.
• If there is no free frame, use a page replacement algorithm to select a

victim frame: write victim frame to disk if dirty.

20 / 45



Page Replacement (3/4)

I Bring the desired page into the (newly) free frame; update the page and
frame tables

21 / 45



Page Replacement (4/4)

I Continue the process by restarting the instruction that caused the trap.

22 / 45



Dirty Bit

I Use modify (dirty) bit to reduce overhead of page transfers - only modi-
fied pages are written to disk.

23 / 45



Page Replacement Algorithms

24 / 45



Evaluate Page Replacement Algorithms

I Refernce string is a sequence of page numbers.

I Assume a reference string could be
7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

I Evaluate algorithm by running it on a reference string and computing the
number of page faults on that string.

25 / 45



Page Replacement Algorithms

I First-In-First-Out (FIFO)

I Optimal

I Least Recently Used (LRU)

I LRU-Approximation

I Counting-Based

26 / 45



FIFO Page Replacement

27 / 45



FIFO Page Replacement

I Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

I 3 frames (3 pages can be in memory at a time per process)

I 15 page faults

28 / 45



Optimal Page Replacement

29 / 45



Optimal Page Replacement

I Replace page that will not be used for longest period of time.

I How do you know this? Can’t read the future!

I 9 faults is optimal for this example.

I Used for measuring how well your algorithm performs.

30 / 45



LRU Page Replacement

31 / 45



LRU Page Replacement

I Use past knowledge rather than the future.

I Replace page that has not been used in the most amount of time.

I 12 faults: better than FIFO but worse than OPT

I Generally good algorithm and frequently used

32 / 45



LRU Implementation (1/2)

I Counter implementation

I Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter.

I When a page needs to be changed, look at the counters to find smallest
value.

I Search through table needed.

33 / 45



LRU Implementation (2/2)

I Stack implementation

I Keep a stack of page numbers in a double link form.

I Page referenced: move it to the top

I No search for replacement.

34 / 45



Stack Implementation

I Use of a stack to record most recent page references.

35 / 45



LRU-Approximation
Page Replacement

36 / 45



LRU-Approximation Page Replacement

I LRU needs special hardware and still slow

I Improvements: LRU-Approximation
• Reference bit
• Second-chance algorithm

37 / 45



Reference Bit

I With each page associate a bit, initially = 0

I When page is referenced, bit set to 1

I Replace any with reference bit = 0 (if one exists)

I We do not know the order

38 / 45



Second-Chance Algorithm (1/2)

I Generally FIFO, plus hardware-provided reference bit

I If page to be replaced has
• Reference bit = 0 → replace it
• Reference bit = 1 then, set reference bit 0, leave page in memory, and

replace next page, subject to same rules.

39 / 45



Second-Chance Algorithm (2/2)

40 / 45



Counting Page Replacement

41 / 45



Counting Page Replacement

I Keep a counter of the number of references that have been made to each
page.

I Lease Frequently Used (LFU) algorithm: replaces page with smallest
count.

I Most Frequently Used (MFU) algorithm: based on the argument that
the page with the smallest count was probably just brought in and has
yet to be used.

42 / 45



Summary

43 / 45



Summary

I Partially-loaded programs

I Virtual memory: much larger than physical memory

I Demand paging similar to paging + swapping

I Page fault

I Page replacement algorithms:
• FIFO, optimal, LRU, LRU-approximate, counting-based

44 / 45



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

45 / 45


