Virtual Memory

Amir H. Payberah
payberah@kth.se
2022

Motivation

v

A program needs to be in memory to execute.

v

But, entire program rarely used (e.g., unusual routines, large data structures).

v

Only part of the program needs to be in memory for execution.

» More programs running concurrently.

Virtual Memory

» Separation of user logical memory from physical memory.

» Logical address space can be much larger than physical address space.

page 0

page 1

page 2 T
— D Em
\ o T~ mEom
EE N
S~—F—E Bl

EEE
Tan g

page v physical
memory

virtual
memory

Virtual Address Space (1/2)

» Virtual address space: logical view of how process is stored in memory.
» Meanwhile, physical memory organized in page frames.

» MMU must map logical to physical.

memory
map

page v physical
virtual memery

Virtual Address Space (2/2)

» The hole between heap and stack is part of the
virtual address space, but will require actual
physical pages only if the heap or stack grows.

stack

Demand Paging

Demand-Paging

» Demand-paging: bring a page into memory only when it is needed.

> lazy swapper.

TN
N

swap out odJ 100 20 31
program

A o8 585 605 70
8[] 9[1o[1]
12131415]

program
B ~_ swap in 1617 [118L 190]
20[J21[Je2[Je3[]

.. N 4

main
memory

Basic Concepts

» The pager guesses which pages will be used
again before swapping out.

valid-invalid
frame bit

» Valid-invalid bit: distinguish between the
pages in memory and on disk.
v: memory resident logel

memory

I not In memory 1

@ m|m|o|lo|w|>

N o o s w N = O

page table

U
U &
[l [0
(€ [e
g

physical memory

Page Fault

» Access to a page marked invalid causes a page fault.

» Causing a trap to the OS: brings the desired page into memory.

Handling Page Fault (1/6)

» Check an internal table for the process to determine whether the reference
was a valid or an invalid memory access.

@ page is on
backing store
T
operating
system @
reference
@ trap
load M N i
® (1
restart page table
instruction|
free frame —
reset page bring inf
table missing page

physical
memory

Handling Page Fault (2/6)

> If the reference was invalid, we terminate the process.

» If it was valid but we have not yet brought in that page, we now page it in.

page is on
backing store —
operating
system @
reference
@ trap
load M N i
® (]
restart | page table
instruction|
free frame =
reset page bring in|
table missing page

physical

memory

Handling Page Fault (3/6)

» We find a free frame.

@ page is on
backing store m
operating
system @
reference trap
load M N i
® (1
restart page table
instruction
free frame i
reset page bring in|
table missing page

physical

memory

Handling Page Fault (4/6)

» We schedule a disk operation to read the desired page into the newly allo-
cated frame.

® page is on
backing store /_\
operating
system @
reference trap
load M N i
® (]
restart page table
instruction
free frame i
reset page bring inf
table missing page

physical
memory

Handling Page Fault (5/6)

» When the disk read is complete, we modify the internal table kept with the
process and the page table to indicate that the page is now in memory.

@ page is on
backing store

T
operating
system @
reference
@ trap
load M N i
® (1
restart page table
instruction|
free frame —
reset page bring inf
table missing page

physical
memory

Handling Page Fault (6/6)

» We restart the instruction that was interrupted by the trap.

page is on
backing store —
operating
system @
reference
@ trap
load M 3 i
® (1
restart page table
instruction|
free frame =
reset page bring in|
table missing page

physical

memory

Page Replacement

What Happens if There is no Free Frame?

» Assume, we had 40 frames in physical memory.

» And, we run 6 processes, each of which is 10 pages in size, but actually
uses only 5 pages.

» It is possible that each of these processes may suddenly try to use all 10
of its pages: resulting in a need for 60 frames when only 40 are available.

» Increasing the degree of multiprogramming: over-allocating memory

Over-Allocation of Memory

v

While a user process is executing, a page fault occurs.

v

The OS determines where the desired page is residing on the disk.

v

But, it finds that there are no free frames on the free-frame list.

v

Need for page replacement

Need For Page Replacement

frame valid-invalid
N

¢ bit N

0 A M
PC ——1) B
2 C
3 D
logical memory page table for 0 | kernel
for process 1 process 1 Y ‘L
2 D
3 C ?
frame valid-invalid 4 F
N /bt
0 E 5 H
1 F 6 A
2| @ TL_E -
3 H physical memory backing store
logical memory page table for

for process 2 process 2

Page Replacement (1/4)

» Find the location of the desired page on disk.

frame valid-invalid bit

Ty

page out
change victim

to invalid %—VD
C® | victim

reset page

table for \
age table
pag new page ®page h \D
desired

page

physical
memory

Page Replacement (2/4)

» Find a free frame.
e If there is a free frame, use it.
¢ If there is no free frame, use a page replacement algorithm to select a
victim frame: write victim frame to disk if dirty.

frame valid-invalid bit

Ty

page out
change victim

to invalid %’D
—® | victim
]

reset page \
table for
age table
pag new page ®page h \D
desired

page

physical
memory

Page Replacement (3/4)

» Bring the desired page into the (newly) free frame; update the page and
frame tables

frame valid-invalid bit

page out
change victim

to invalid %’D
—® | victim
]

reset page
page table table for @

newpage page ih \D
desired

page

physical
memory

Page Replacement (4/4)

» Continue the process by restarting the instruction that caused the trap.

frame valid-invalid bit

Ty

page out
change victim

to invalid %—VD
C® | victim

reset page

table for \
age table
pag new page ®page h \D
desired

page

physical
memory

Dirty Bit

frame valid-invalid bit

page out

change victim

o |i to invalid %ﬂm

@ f| victim
reset page \

table for
age table
P newpage ®P399 in \1:‘
desired

page

physical
memory

» Use modify (dirty) bit to reduce overhead of page transfers - only modi-
fied pages are written to disk.

Page Replacement Algorithms

Evaluate Page Replacement Algorithms

» Refernce string is a sequence of page numbers.

» Assume a reference string could be
7,0,1,2,0,3,0,423,03,03,2120170,1

» Evaluate algorithm by running it on a reference string and computing the
number of page faults on that string.

Page Replacement Algorithms

v

First-In-First-Out (FIFO)

v

Optimal

v

Least Recently Used (LRU)

v

LRU-Approximation

v

Counting-Based

FIFO Page Replacement

FIFO Page Replacement

» Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

» 3 frames (3 pages can be in memory at a time per process)

reference slring

2 3 0
1] [o] [o]
2 2] [

page frames

» 15 page faults

Optimal Page Replacement

Optimal Page Replacement

» Replace page that will not be used for longest period of time.
» How do you know this? Can't read the future!
» 9 faults is optimal for this example.

reference string
4 2 3 0 7 0 A

ol
1]

page frames

» Used for measuring how well your algorithm performs.

LRU Page Replacement

LRU Page Replacement

» Use past knowledge rather than the future.
» Replace page that has not been used in the most amount of time.

reference slring

4 2 3

page frames

» 12 faults: better than FIFO but worse than OPT

» Generally good algorithm and frequently used

LRU Implementation (1/2)

v

Counter implementation

v

Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter.

» When a page needs to be changed, look at the counters to find smallest
value.

v

Search through table needed.

LRU Implementation (2/2)

v

Stack implementation

» Keep a stack of page numbers in a double link form.

v

Page referenced: move it to the top

v

No search for replacement.

Stack Implementation

> Use of a stack to record most recent page references.

reference string
4 7 0 7 1 0

S
-
S
~
-
o

stack stack
before] after
a b

LRU-Approximation
Page Replacement

LRU-Approximation Page Replacement

» LRU needs special hardware and still slow

» Improvements: LRU-Approximation

e Reference bit
e Second-chance algorithm

Reference Bit

v

With each page associate a bit, initially = 0

\4

When page is referenced, bit set to 1

v

Replace any with reference bit = 0 (if one exists)

We do not know the order

v

Second-Chance Algorithm (1/2)

» Generally FIFO, plus hardware-provided reference bit

» If page to be replaced has
e Reference bit = 0 — replace it
o Reference bit = 1 then, set reference bit 0, leave page in memory, and
replace next page, subject to same rules.

Second-Chance Algorithm (2/2)

reference pages reference pages

0
e, =T
[
5
Y :i

[e] &

EE%EEEE

circular queue of pages circular queue of pages

Counting Page Replacement

Counting Page Replacement

» Keep a counter of the number of references that have been made to each
page.

» Lease Frequently Used (LFU) algorithm: replaces page with smallest
count.

» Most Frequently Used (MFU) algorithm: based on the argument that
the page with the smallest count was probably just brought in and has
yet to be used.

Summary

Summary

v

Partially-loaded programs

v

Virtual memory: much larger than physical memory

v

Demand paging similar to paging + swapping

v

Page fault

v

Page replacement algorithms:
» FIFO, optimal, LRU, LRU-approximate, counting-based

Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

