
Memory Managment - Part II

Amir H. Payberah
payberah@kth.se

2022



Reminder

1 / 37



Reminder (1/3)

I External fragmentation vs. internal fragmentation

I Compaction: shuffle memory contents to place all free memory together
in one large block.

I Other solutions:
• Segmentation
• Paging

2 / 37



Reminder (2/3)

3 / 37



Reminder (3/3)

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3: 3200 + 852 = 4052

I A reference to byte 1222 of segment 0: trap to OS

4 / 37



Paging

5 / 37



Paging vs. Segmentation

I Segmentation and paging, both, permit the physical address space of a
process to be noncontiguous.

I Paging avoids external fragmentation and the need for compaction,
whereas segmentation does not.

6 / 37



Paging (1/2)

I Physical address space of a process can be noncontiguous; process is
allocated physical memory whenever the latter is available.

I Divide physical memory into fixed-sized blocks called frames.
• Size is power of 2, between 512 bytes and 16 Mbytes.

I Divide logical memory into blocks of same size called pages.

7 / 37



Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and load
program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.

8 / 37



Address Translation Scheme

I Logical address generated by CPU is divided into two parts:

I Page number (p): used as an index into a page table that contains base
address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address.

I For given logical address space 2m and page size 2n.

9 / 37



Paging Hardware

10 / 37



Paging Model of Logical and Physical Memory

11 / 37



Paging Example

I The logical address: m = 4 and n = 2

I Logical address 3: 5 × 4 + 3 = 23

I Logical address 10: 1 × 4 + 2 = 6

12 / 37



Free Frames

before allocation after allocation

13 / 37



Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

14 / 37



Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes are

desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred is
larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

15 / 37



Page Table Implementation

16 / 37



Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.

17 / 37



Translation Look-aside Buffers (1/2)

I The two memory access problem can be solved by the use of a special
fast-lookup hardware cache called translation look-aside buffers (TLBs).

18 / 37



Translation Look-aside Buffers (2/2)

I TLB

I Address translation (p, d)
• If p is in TLB, get frame# out.
• Otherwise, get frame# from page table.

19 / 37



Paging Hardware With TLB

20 / 37



Shared Pages

21 / 37



Shared Pages

I Shared code
• One copy of read-only code shared among processes (e.g., text editors).
• Similar to multiple threads sharing the same process space.

I Private code and data
• Each process keeps a separate copy of the code and data.

22 / 37



Shared Pages Example

23 / 37



Structure of the Page Table

24 / 37



Structure of the Page Table (1/2)

I Consider a 32-bit logical address space (m = 32):
• Page size of 4KB = 212 (n = 12).
• Page table would have 1 million entries m − n = 20.
• If each entry is 4B: 4MB of physical address space memory for page

table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

25 / 37



Structure of the Page Table (2/2)

I Hashed Page Tables

I Hierarchical Paging

26 / 37



Hashed Page Tables

27 / 37



Hashed Page Tables

I The logical page number is hashed into a page table.

I This page table contains a chain of elements hashing to the same
location.

I Each element contains

1. The logical page number
2. The value of the mapped page frame
3. A pointer to the next element

28 / 37



Hashed Page Table Architecture

29 / 37



Hierarchical Paging

30 / 37



Hierarchical Page Tables

I Break up the logical address space into multiple page tables.

I A simple technique is a two-level page table.

I We then page the page table.

31 / 37



Two-Level Page-Table Scheme

32 / 37



Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table.

I Known as forward-mapped page table.

33 / 37



Address-Translation Scheme

34 / 37



Summary

35 / 37



Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Page table structure: hierarchical paging, hashed page tables

36 / 37



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

37 / 37


