
Memory Managment - Part I

Amir H. Payberah
payberah@kth.se

2022



Motivation

I Main memory is a large array of bytes, each with its own address.

I Program must be brought (from disk) into memory and placed within a
process for it to be run.

• Machine instructions may take memory addresses as arguments, but not
disk addresses.

I The CPU fetches instructions from memory according to the value of the
program counter.

1 / 39



Motivation

I Main memory is a large array of bytes, each with its own address.

I Program must be brought (from disk) into memory and placed within a
process for it to be run.

• Machine instructions may take memory addresses as arguments, but not
disk addresses.

I The CPU fetches instructions from memory according to the value of the
program counter.

1 / 39



Motivation

I Main memory is a large array of bytes, each with its own address.

I Program must be brought (from disk) into memory and placed within a
process for it to be run.

• Machine instructions may take memory addresses as arguments, but not
disk addresses.

I The CPU fetches instructions from memory according to the value of the
program counter.

1 / 39



Motivation

I Main memory is a large array of bytes, each with its own address.

I Program must be brought (from disk) into memory and placed within a
process for it to be run.

• Machine instructions may take memory addresses as arguments, but not
disk addresses.

I The CPU fetches instructions from memory according to the value of the
program counter.

1 / 39



Basic Hardware

I Main memory and registers are the only storage that the CPU can access
directly.

I Register access in one CPU clock (or less)

I Main memory can take many cycles, causing a stall.

I Cache sits between main memory and registers.

2 / 39



Basic Hardware

I Main memory and registers are the only storage that the CPU can access
directly.

I Register access in one CPU clock (or less)

I Main memory can take many cycles, causing a stall.

I Cache sits between main memory and registers.

2 / 39



Basic Hardware

I Main memory and registers are the only storage that the CPU can access
directly.

I Register access in one CPU clock (or less)

I Main memory can take many cycles, causing a stall.

I Cache sits between main memory and registers.

2 / 39



Basic Hardware

I Main memory and registers are the only storage that the CPU can access
directly.

I Register access in one CPU clock (or less)

I Main memory can take many cycles, causing a stall.

I Cache sits between main memory and registers.

2 / 39



Address Protection

I We must protect the OS from access by user processes.

I We must protect user processes from one another.

I This protection is provided by the hardware.

I A separate memory space for each process.
• Determining the range of legal addresses that the process may access.

3 / 39



Address Protection

I We must protect the OS from access by user processes.

I We must protect user processes from one another.

I This protection is provided by the hardware.

I A separate memory space for each process.
• Determining the range of legal addresses that the process may access.

3 / 39



Address Protection

I We must protect the OS from access by user processes.

I We must protect user processes from one another.

I This protection is provided by the hardware.

I A separate memory space for each process.
• Determining the range of legal addresses that the process may access.

3 / 39



Address Protection

I We must protect the OS from access by user processes.

I We must protect user processes from one another.

I This protection is provided by the hardware.

I A separate memory space for each process.
• Determining the range of legal addresses that the process may access.

3 / 39



Base and Limit Registers

I A pair of base and limit registers
define the logical address space.

I CPU must check every memory
access generated in user mode to
be sure it is between base and limit
for that user.

4 / 39



Base and Limit Registers

I A pair of base and limit registers
define the logical address space.

I CPU must check every memory
access generated in user mode to
be sure it is between base and limit
for that user.

4 / 39



Hardware Address Protection

I Any attempt by a user program to access OS memory or other users’
memory results in a trap to the OS, which treats the attempt as a fatal
error.

5 / 39



Address Binding

6 / 39



Address Binding

I Programs on disk, ready to be brought into memory to execute form an
input queue.

I A user process can reside in any part of the physical memory.

7 / 39



Address Binding

I Programs on disk, ready to be brought into memory to execute form an
input queue.

I A user process can reside in any part of the physical memory.

7 / 39



Binding of Instructions and Data to Memory (1/3)

I Address binding of instructions and data
to memory addresses can happen at three
different stages.

I Compile time: if memory location known
a priori, absolute code can be generated.

• Must recompile code if starting location
changes.

8 / 39



Binding of Instructions and Data to Memory (1/3)

I Address binding of instructions and data
to memory addresses can happen at three
different stages.

I Compile time: if memory location known
a priori, absolute code can be generated.

• Must recompile code if starting location
changes.

8 / 39



Binding of Instructions and Data to Memory (1/3)

I Address binding of instructions and data
to memory addresses can happen at three
different stages.

I Compile time: if memory location known
a priori, absolute code can be generated.

• Must recompile code if starting location
changes.

8 / 39



Binding of Instructions and Data to Memory (2/3)

I Load time: must generate relocatable code
if memory location is not known at compile
time.

• Final binding is delayed until load time.
• If the starting address changes, we need

only reload the user code to incorporate
this changed value.

9 / 39



Binding of Instructions and Data to Memory (2/3)

I Load time: must generate relocatable code
if memory location is not known at compile
time.

• Final binding is delayed until load time.

• If the starting address changes, we need
only reload the user code to incorporate
this changed value.

9 / 39



Binding of Instructions and Data to Memory (2/3)

I Load time: must generate relocatable code
if memory location is not known at compile
time.

• Final binding is delayed until load time.
• If the starting address changes, we need

only reload the user code to incorporate
this changed value.

9 / 39



Binding of Instructions and Data to Memory (3/3)

I Execution time: binding delayed until
run time if the process can be moved
during its execution from one memory
segment to another.

• Need hardware support

10 / 39



Logical vs. Physical Address Space

I Logical address (virtual address): address generated by the CPU.

• Logical address space is the set of all logical addresses generated by a
program.

I Physical address: address seen by the memory unit.

• Physical address space is the set of all physical addresses generated by a
program.

11 / 39



Logical vs. Physical Address Space

I Logical address (virtual address): address generated by the CPU.
• Logical address space is the set of all logical addresses generated by a

program.

I Physical address: address seen by the memory unit.

• Physical address space is the set of all physical addresses generated by a
program.

11 / 39



Logical vs. Physical Address Space

I Logical address (virtual address): address generated by the CPU.
• Logical address space is the set of all logical addresses generated by a

program.

I Physical address: address seen by the memory unit.

• Physical address space is the set of all physical addresses generated by a
program.

11 / 39



Logical vs. Physical Address Space

I Logical address (virtual address): address generated by the CPU.
• Logical address space is the set of all logical addresses generated by a

program.

I Physical address: address seen by the memory unit.
• Physical address space is the set of all physical addresses generated by a

program.

11 / 39



Memory-Management Unit (MMU) (1/2)

I Hardware device that maps virtual to physical address at run time.

I E.g., the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

• Base register now called relocation register.

12 / 39



Memory-Management Unit (MMU) (1/2)

I Hardware device that maps virtual to physical address at run time.

I E.g., the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

• Base register now called relocation register.

12 / 39



Memory-Management Unit (MMU) (1/2)

I Hardware device that maps virtual to physical address at run time.

I E.g., the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

• Base register now called relocation register.

12 / 39



Memory-Management Unit (MMU) (2/2)

I Two different types of addresses:
• Logical addresses: range 0 to max
• Physical addresses: range R + 0 to R + max for a base value R

I The user program generates only logical addresses and thinks that the
process runs in locations 0 to max.

I These logical addresses must be mapped to physical addresses before
they are used.

13 / 39



Memory-Management Unit (MMU) (2/2)

I Two different types of addresses:
• Logical addresses: range 0 to max
• Physical addresses: range R + 0 to R + max for a base value R

I The user program generates only logical addresses and thinks that the
process runs in locations 0 to max.

I These logical addresses must be mapped to physical addresses before
they are used.

13 / 39



Memory-Management Unit (MMU) (2/2)

I Two different types of addresses:
• Logical addresses: range 0 to max
• Physical addresses: range R + 0 to R + max for a base value R

I The user program generates only logical addresses and thinks that the
process runs in locations 0 to max.

I These logical addresses must be mapped to physical addresses before
they are used.

13 / 39



Dynamic Loading and Linking

14 / 39



Dynamic Loading (1/2)

I Routine/library is not loaded until it is called.

I The main program is loaded into memory and is executed.

I When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

I Then control is passed to the newly loaded routine.

15 / 39



Dynamic Loading (1/2)

I Routine/library is not loaded until it is called.

I The main program is loaded into memory and is executed.

I When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

I Then control is passed to the newly loaded routine.

15 / 39



Dynamic Loading (1/2)

I Routine/library is not loaded until it is called.

I The main program is loaded into memory and is executed.

I When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

I Then control is passed to the newly loaded routine.

15 / 39



Dynamic Loading (1/2)

I Routine/library is not loaded until it is called.

I The main program is loaded into memory and is executed.

I When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

I Then control is passed to the newly loaded routine.

15 / 39



Dynamic Loading (2/2)

I Better memory-space utilization; unused routine is never loaded.

I Useful when large amounts of code are needed to handle infrequently
occurring cases.

I No special support from the OS is required.

I OS can help by providing libraries to implement dynamic loading.

16 / 39



Dynamic Loading (2/2)

I Better memory-space utilization; unused routine is never loaded.

I Useful when large amounts of code are needed to handle infrequently
occurring cases.

I No special support from the OS is required.

I OS can help by providing libraries to implement dynamic loading.

16 / 39



Dynamic Loading (2/2)

I Better memory-space utilization; unused routine is never loaded.

I Useful when large amounts of code are needed to handle infrequently
occurring cases.

I No special support from the OS is required.

I OS can help by providing libraries to implement dynamic loading.

16 / 39



Dynamic Loading (2/2)

I Better memory-space utilization; unused routine is never loaded.

I Useful when large amounts of code are needed to handle infrequently
occurring cases.

I No special support from the OS is required.

I OS can help by providing libraries to implement dynamic loading.

16 / 39



Dynamic Linking

I Static linking: system libraries and program code combined by the loader
into the binary program image.

I Dynamic linking: linking postponed until execution time.

• Useful for shared libraries.

17 / 39



Dynamic Linking

I Static linking: system libraries and program code combined by the loader
into the binary program image.

I Dynamic linking: linking postponed until execution time.

• Useful for shared libraries.

17 / 39



Dynamic Linking

I Static linking: system libraries and program code combined by the loader
into the binary program image.

I Dynamic linking: linking postponed until execution time.
• Useful for shared libraries.

17 / 39



Swapping

18 / 39



Swapping

I A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

I Backing store: fast disk large enough to accommodate copies of all
memory images for all users.

19 / 39



Swapping

I A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

I Backing store: fast disk large enough to accommodate copies of all
memory images for all users.

19 / 39



Swapping Cost

I Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

I If next processes to be put on CPU is not in memory, need to swap out
a process and swap in target process.

I Example:
• 100MB process swapping to hard disk with transfer rate of 50MB/sec.
• Swap out time of 2s + swap in of same sized process.
• Total context switch swapping component time of 4s.

20 / 39



Swapping Cost

I Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

I If next processes to be put on CPU is not in memory, need to swap out
a process and swap in target process.

I Example:
• 100MB process swapping to hard disk with transfer rate of 50MB/sec.
• Swap out time of 2s + swap in of same sized process.
• Total context switch swapping component time of 4s.

20 / 39



Swapping Cost

I Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

I If next processes to be put on CPU is not in memory, need to swap out
a process and swap in target process.

I Example:
• 100MB process swapping to hard disk with transfer rate of 50MB/sec.
• Swap out time of 2s + swap in of same sized process.
• Total context switch swapping component time of 4s.

20 / 39



Swapping on Mobile Systems (1/2)

I Not typically supported.

I Flash memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile platform

21 / 39



Swapping on Mobile Systems (1/2)

I Not typically supported.

I Flash memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile platform

21 / 39



Swapping on Mobile Systems (2/2)

I Instead use other methods to free memory if low.

I iOS asks apps to voluntarily relinquish allocated memory.

I Read-only data thrown out and reloaded from flash if needed.

I Failure to free can result in termination.

I Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

22 / 39



Swapping on Mobile Systems (2/2)

I Instead use other methods to free memory if low.

I iOS asks apps to voluntarily relinquish allocated memory.

I Read-only data thrown out and reloaded from flash if needed.

I Failure to free can result in termination.

I Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

22 / 39



Swapping on Mobile Systems (2/2)

I Instead use other methods to free memory if low.

I iOS asks apps to voluntarily relinquish allocated memory.

I Read-only data thrown out and reloaded from flash if needed.

I Failure to free can result in termination.

I Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

22 / 39



Swapping on Mobile Systems (2/2)

I Instead use other methods to free memory if low.

I iOS asks apps to voluntarily relinquish allocated memory.

I Read-only data thrown out and reloaded from flash if needed.

I Failure to free can result in termination.

I Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

22 / 39



Swapping on Mobile Systems (2/2)

I Instead use other methods to free memory if low.

I iOS asks apps to voluntarily relinquish allocated memory.

I Read-only data thrown out and reloaded from flash if needed.

I Failure to free can result in termination.

I Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

22 / 39



Contiguous Memory Allocation

23 / 39



Contiguous Allocation (1/2)

I Main memory must support both OS and user processes.

I Limited resource, must allocate efficiently.

I Contiguous allocation is an early method.

I Main memory usually into two partitions:
• Resident OS and user processes memory address.
• Each process contained in single contiguous section of memory.

24 / 39



Contiguous Allocation (1/2)

I Main memory must support both OS and user processes.

I Limited resource, must allocate efficiently.

I Contiguous allocation is an early method.

I Main memory usually into two partitions:
• Resident OS and user processes memory address.
• Each process contained in single contiguous section of memory.

24 / 39



Contiguous Allocation (1/2)

I Main memory must support both OS and user processes.

I Limited resource, must allocate efficiently.

I Contiguous allocation is an early method.

I Main memory usually into two partitions:
• Resident OS and user processes memory address.
• Each process contained in single contiguous section of memory.

24 / 39



Contiguous Allocation (1/2)

I Main memory must support both OS and user processes.

I Limited resource, must allocate efficiently.

I Contiguous allocation is an early method.

I Main memory usually into two partitions:
• Resident OS and user processes memory address.
• Each process contained in single contiguous section of memory.

24 / 39



Contiguous Allocation (2/2)

I Relocation registers used to protect user processes from each other, and
from changing OS code and data.

• Base register contains value of smallest physical address.
• Limit register contains range of logical addresses.
• MMU maps logical address dynamically.

25 / 39



Contiguous Allocation (2/2)

I Relocation registers used to protect user processes from each other, and
from changing OS code and data.

• Base register contains value of smallest physical address.

• Limit register contains range of logical addresses.
• MMU maps logical address dynamically.

25 / 39



Contiguous Allocation (2/2)

I Relocation registers used to protect user processes from each other, and
from changing OS code and data.

• Base register contains value of smallest physical address.
• Limit register contains range of logical addresses.

• MMU maps logical address dynamically.

25 / 39



Contiguous Allocation (2/2)

I Relocation registers used to protect user processes from each other, and
from changing OS code and data.

• Base register contains value of smallest physical address.
• Limit register contains range of logical addresses.
• MMU maps logical address dynamically.

25 / 39



Multiple-Partition Allocation (1/2)

I Memory is divided into several fixed-sized partitions.

I Each partition may contain exactly one process.

I Degree of multiprogramming limited by number of partitions.

I When a partition is free, a process is selected from the input queue and
is loaded into the free partition.

26 / 39



Multiple-Partition Allocation (1/2)

I Memory is divided into several fixed-sized partitions.

I Each partition may contain exactly one process.

I Degree of multiprogramming limited by number of partitions.

I When a partition is free, a process is selected from the input queue and
is loaded into the free partition.

26 / 39



Multiple-Partition Allocation (1/2)

I Memory is divided into several fixed-sized partitions.

I Each partition may contain exactly one process.

I Degree of multiprogramming limited by number of partitions.

I When a partition is free, a process is selected from the input queue and
is loaded into the free partition.

26 / 39



Multiple-Partition Allocation (1/2)

I Memory is divided into several fixed-sized partitions.

I Each partition may contain exactly one process.

I Degree of multiprogramming limited by number of partitions.

I When a partition is free, a process is selected from the input queue and
is loaded into the free partition.

26 / 39



Multiple-Partition Allocation (2/2)

I Variable-partition sizes for efficiency (sized to a given process’ needs).

I Hole: block of available memory.

I When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

I Process exiting frees its partition, adjacent free partitions combined.

I OS maintains information about: allocated partitions and free partitions
(holes).

27 / 39



Multiple-Partition Allocation (2/2)

I Variable-partition sizes for efficiency (sized to a given process’ needs).

I Hole: block of available memory.

I When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

I Process exiting frees its partition, adjacent free partitions combined.

I OS maintains information about: allocated partitions and free partitions
(holes).

27 / 39



Multiple-Partition Allocation (2/2)

I Variable-partition sizes for efficiency (sized to a given process’ needs).

I Hole: block of available memory.

I When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

I Process exiting frees its partition, adjacent free partitions combined.

I OS maintains information about: allocated partitions and free partitions
(holes).

27 / 39



Multiple-Partition Allocation (2/2)

I Variable-partition sizes for efficiency (sized to a given process’ needs).

I Hole: block of available memory.

I When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

I Process exiting frees its partition, adjacent free partitions combined.

I OS maintains information about: allocated partitions and free partitions
(holes).

27 / 39



Multiple-Partition Allocation (2/2)

I Variable-partition sizes for efficiency (sized to a given process’ needs).

I Hole: block of available memory.

I When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

I Process exiting frees its partition, adjacent free partitions combined.

I OS maintains information about: allocated partitions and free partitions
(holes).

27 / 39



Dynamic Storage-Allocation Problem

I How to satisfy a request of size n from a list of free holes?

I First-fit: allocate the first hole that is big enough

I Best-fit: allocate the smallest hole that is big enough
• Must search entire list, unless ordered by size.
• Produces the smallest leftover hole.

I Worst-fit: allocate the largest hole
• Must also search entire list.
• Produces the largest leftover hole.

I First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

28 / 39



Dynamic Storage-Allocation Problem

I How to satisfy a request of size n from a list of free holes?

I First-fit: allocate the first hole that is big enough

I Best-fit: allocate the smallest hole that is big enough
• Must search entire list, unless ordered by size.
• Produces the smallest leftover hole.

I Worst-fit: allocate the largest hole
• Must also search entire list.
• Produces the largest leftover hole.

I First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

28 / 39



Dynamic Storage-Allocation Problem

I How to satisfy a request of size n from a list of free holes?

I First-fit: allocate the first hole that is big enough

I Best-fit: allocate the smallest hole that is big enough
• Must search entire list, unless ordered by size.
• Produces the smallest leftover hole.

I Worst-fit: allocate the largest hole
• Must also search entire list.
• Produces the largest leftover hole.

I First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

28 / 39



Dynamic Storage-Allocation Problem

I How to satisfy a request of size n from a list of free holes?

I First-fit: allocate the first hole that is big enough

I Best-fit: allocate the smallest hole that is big enough
• Must search entire list, unless ordered by size.
• Produces the smallest leftover hole.

I Worst-fit: allocate the largest hole
• Must also search entire list.
• Produces the largest leftover hole.

I First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

28 / 39



Dynamic Storage-Allocation Problem

I How to satisfy a request of size n from a list of free holes?

I First-fit: allocate the first hole that is big enough

I Best-fit: allocate the smallest hole that is big enough
• Must search entire list, unless ordered by size.
• Produces the smallest leftover hole.

I Worst-fit: allocate the largest hole
• Must also search entire list.
• Produces the largest leftover hole.

I First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

28 / 39



Fragmentation

I External fragmentation: total memory space exists to satisfy a request,
but it is not contiguous.

I Internal fragmentation: allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition,
but not being used.

29 / 39



Fragmentation

I External fragmentation: total memory space exists to satisfy a request,
but it is not contiguous.

I Internal fragmentation: allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition,
but not being used.

29 / 39



External Fragmentation

I Compaction: a solution to the problem of external fragmentation.

I Shuffle memory contents to place all free memory together in one large
block.

I Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

I Two techniques:
• Segmentation
• Paging

30 / 39



External Fragmentation

I Compaction: a solution to the problem of external fragmentation.

I Shuffle memory contents to place all free memory together in one large
block.

I Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

I Two techniques:
• Segmentation
• Paging

30 / 39



External Fragmentation

I Compaction: a solution to the problem of external fragmentation.

I Shuffle memory contents to place all free memory together in one large
block.

I Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

I Two techniques:
• Segmentation
• Paging

30 / 39



External Fragmentation

I Compaction: a solution to the problem of external fragmentation.

I Shuffle memory contents to place all free memory together in one large
block.

I Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

I Two techniques:
• Segmentation
• Paging

30 / 39



Segmentation

31 / 39



Segmentation

I Memory-management scheme supports user view of memory.

I A program is a collection of segments.

I A segment is a logical unit such as:
• Main program
• Procedure
• Function
• Object
• ...

32 / 39



Segmentation

I Memory-management scheme supports user view of memory.

I A program is a collection of segments.

I A segment is a logical unit such as:
• Main program
• Procedure
• Function
• Object
• ...

32 / 39



Segmentation

I Memory-management scheme supports user view of memory.

I A program is a collection of segments.

I A segment is a logical unit such as:
• Main program
• Procedure
• Function
• Object
• ...

32 / 39



Logical View of Segmentation

33 / 39



Segmentation Architecture

I Logical address consists of a tuple: 〈segment number, offset〉

I Segment table: maps two-dimensional user-defined addresses into
one-dimensional physical address.

I Each table entry has:
• Base: contains the starting physical address where the segments reside in

memory.
• Limit: specifies the length of the segment.

34 / 39



Segmentation Architecture

I Logical address consists of a tuple: 〈segment number, offset〉

I Segment table: maps two-dimensional user-defined addresses into
one-dimensional physical address.

I Each table entry has:
• Base: contains the starting physical address where the segments reside in

memory.
• Limit: specifies the length of the segment.

34 / 39



Segmentation Architecture

I Logical address consists of a tuple: 〈segment number, offset〉

I Segment table: maps two-dimensional user-defined addresses into
one-dimensional physical address.

I Each table entry has:
• Base: contains the starting physical address where the segments reside in

memory.
• Limit: specifies the length of the segment.

34 / 39



Segmentation Hardware

35 / 39



Segmentation Example

I A reference to byte 53 of segment 2:

I A reference to byte 852 of segment 3:

I A reference to byte 1222 of segment 0:

36 / 39



Segmentation Example

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3:

I A reference to byte 1222 of segment 0:

36 / 39



Segmentation Example

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3:

I A reference to byte 1222 of segment 0:

36 / 39



Segmentation Example

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3: 3200 + 852 = 4052

I A reference to byte 1222 of segment 0:

36 / 39



Segmentation Example

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3: 3200 + 852 = 4052

I A reference to byte 1222 of segment 0:

36 / 39



Segmentation Example

I A reference to byte 53 of segment 2: 4300 + 53 = 4353

I A reference to byte 852 of segment 3: 3200 + 852 = 4052

I A reference to byte 1222 of segment 0: trap to OS

36 / 39



Summary

37 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Summary

I Main memory

I Address protection: base + limit

I Address binding: compile time, load time, execution time

I Logical and physical address, MMU

I Swapping: backing store, swapping cost

I Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

I External and internal fragmentation: compaction, segmentation, paging

I Segmentation: noncontiguous address, user view of memory

38 / 39



Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

39 / 39


