Memory Managment - Part |

Amir H. Payberah
payberah@kth.se
2022

Motivation

» Main memory is a large array of bytes, each with its own address.

Motivation

» Main memory is a large array of bytes, each with its own address.

» Program must be brought (from disk) into memory and placed within a
process for it to be run.

Motivation

» Main memory is a large array of bytes, each with its own address.

» Program must be brought (from disk) into memory and placed within a
process for it to be run.

¢ Machine instructions may take memory addresses as arguments, but not
disk addresses.

Motivation

» Main memory is a large array of bytes, each with its own address.

» Program must be brought (from disk) into memory and placed within a
process for it to be run.
¢ Machine instructions may take memory addresses as arguments, but not
disk addresses.

» The CPU fetches instructions from memory according to the value of the
program counter.

Basic Hardware

» Main memory and registers are the only storage that the CPU can access
directly.

Basic Hardware

» Main memory and registers are the only storage that the CPU can access
directly.

» Register access in one CPU clock (or less)

Basic Hardware

» Main memory and registers are the only storage that the CPU can access
directly.

» Register access in one CPU clock (or less)

» Main memory can take many cycles, causing a stall.

Basic Hardware

» Main memory and registers are the only storage that the CPU can access
directly.

v

Register access in one CPU clock (or less)

» Main memory can take many cycles, causing a stall.

\4

Cache sits between main memory and registers.

Address Protection

» We must protect the OS from access by user processes.

Address Protection

» We must protect the OS from access by user processes.

» We must protect user processes from one another.

Address Protection

» We must protect the OS from access by user processes.

» We must protect user processes from one another.

» This protection is provided by the hardware.

Address Protection

v

We must protect the OS from access by user processes.

» We must protect user processes from one another.

v

This protection is provided by the hardware.

v

A separate memory space for each process.

¢ Determining the range of legal addresses that the process may access.

Base and Limit Registers

» A pair of base and limit registers
define the logical address space.

256000

300040

420940

880000

1024000

operating
system
process
300040
process base
120900
limit
process

Base and Limit Registers

» A pair of base and limit registers
define the logical address space.

» CPU must check every memory
access generated in user mode to
be sure it is between base and limit
for that user.

256000

300040

420940

880000

1024000

operating
system
process
300040
process base
120900
limit
process

Hardware Address Protection

» Any attempt by a user program to access OS memory or other users’
memory results in a trap to the OS, which treats the attempt as a fatal
error.

trap to operating system
monitor—addressing error memory

Address Binding

Address Binding

» Programs on disk, ready to be brought into memory to execute form an
input queue.

Address Binding

» Programs on disk, ready to be brought into memory to execute form an
input queue.

> A user process can reside in any part of the physical memory.

Binding of Instructions and Data to Memory (1/3)

source
program

compile
time

» Address binding of instructions and data
to memory addresses can happen at three
different stages.

load
time

execution
time
(run time)

» Address binding of instructions and data
to memory addresses can happen at three
different stages.

» Compile time: if memory location known
a priori, absolute code can be generated.

Binding of Instructions and Data to Memory (1/3)

source
program

]

compile

time

load
time

execution

ime
(run time)

Binding of Instructions and Data to Memory (1/3)

source
program

compile
time

» Address binding of instructions and data
to memory addresses can happen at three
different stages.

load
time

» Compile time: if memory location known

a priori, absolute code can be generated.

e Must recompile code if starting location
changes.

execution
time
(run time)

Binding of Instructions and Data to Memory (2/3)

source
program

compiler

» Load time: must generate relocatable code
if memory location is not known at compile — 5
time. _

"

executable

g

Aynamical
linked
libraries /..

A (program
inmemory.

compile
time

load
time

execution
time
(run time)

Binding of Instructions and Data to Memory (2/3)

source
program

compiler

» Load time: must generate relocatable code
if memory location is not known at compile —
time. _

o
S
]

"

e Final binding is delayed until load time.

executable

J

Aynamical
linked
libraries /..

g
|

u -
e

compile
time

load
time

execution
time
(run time)

Binding of Instructions and Data to Memory (2/3)

source
program

compile
time

» Load time: must generate relocatable code

¥
v
if memory location is not known at compile —
time. A T
e Final binding is delayed until load time. A
e If the starting address changes, we need e
only reload the user code to incorporate 1
this changed value. G 'f]

libraries /..
“a execution

program P
N (runtime)

Binding of Instructions and Data to Memory (3/3)

» Execution time: binding delayed until _ e
run time if the process can be moved)
during its execution from one memory \ |
segment to another. s

¢ Need hardware support I
i

“a execution
program e
1 memony, (run time)

Logical vs. Physical Address Space

» Logical address (virtual address): address generated by the CPU.

Logical vs. Physical Address Space

» Logical address (virtual address): address generated by the CPU.

* Logical address space is the set of all logical addresses generated by a
program.

Logical vs. Physical Address Space

» Logical address (virtual address): address generated by the CPU.

* Logical address space is the set of all logical addresses generated by a
program.

» Physical address: address seen by the memory unit.

Logical vs. Physical Address Space

» Logical address (virtual address): address generated by the CPU.

* Logical address space is the set of all logical addresses generated by a
program.

» Physical address: address seen by the memory unit.

e Physical address space is the set of all physical addresses generated by a
program.

Memory-Management Unit (MMU) (1/2)

» Hardware device that maps virtual to physical address at run time.

Memory-Management Unit (MMU) (1/2)

» Hardware device that maps virtual to physical address at run time.

» E.g., the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

relocation
register

logical physical
address /\ address
CPU Q

346

memol
14346 v

MMU

Memory-Management Unit (MMU) (1/2)

» Hardware device that maps virtual to physical address at run time.

» E.g., the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

e Base register now called relocation register.

relocation
register

logical physical
address /\ address
CPU Q

346

memol
14346 v

MMU

Memory-Management Unit (MMU) (2/2)

» Two different types of addresses:
e Logical addresses: range 0 to max
* Physical addresses: range R + 0 to R 4+ max for a base value R

relocation
register

logical physical
address address

346

ol

memory
14346

MMU

Memory-Management Unit (MMU) (2/2)

» Two different types of addresses:
e Logical addresses: range 0 to max
* Physical addresses: range R + 0 to R 4+ max for a base value R

> The user program generates only logical addresses and thinks that the
process runs in locations 0 to max.

relocation
register

logical physical
address address

346

ol

memory
14346

MMU

Memory-Management Unit (MMU) (2/2)

» Two different types of addresses:

e Logical addresses: range 0 to max
* Physical addresses: range R + 0 to R 4+ max for a base value R

> The user program generates only logical addresses and thinks that the
process runs in locations 0 to max.

» These logical addresses must be mapped to physical addresses before
they are used.

relocation
register

logical physical
address address

346

ol

memor
14346 v

MMU

Dynamic Loading and Linking

Dynamic Loading (1/2)

» Routine/library is not loaded until it is called.

Dynamic Loading (1/2)

» Routine/library is not loaded until it is called.

» The main program is loaded into memory and is executed.

Dynamic Loading (1/2)

» Routine/library is not loaded until it is called.

» The main program is loaded into memory and is executed.

» When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

Dynamic Loading (1/2)

v

Routine/library is not loaded until it is called.

v

The main program is loaded into memory and is executed.

» When a routine is needed, if it has not been loaded, the loader loads the
desired routine into memory and updates the program’s address tables
to reflect this change.

Then control is passed to the newly loaded routine.

v

Dynamic Loading (2/2)

» Better memory-space utilization; unused routine is never loaded.

Dynamic Loading (2/2)

» Better memory-space utilization; unused routine is never loaded.

» Useful when large amounts of code are needed to handle infrequently
occurring cases.

Dynamic Loading (2/2)

» Better memory-space utilization; unused routine is never loaded.

» Useful when large amounts of code are needed to handle infrequently
occurring cases.

» No special support from the OS is required.

Dynamic Loading (2/2)

v

Better memory-space utilization; unused routine is never loaded.

Useful when large amounts of code are needed to handle infrequently
occurring cases.

\4

v

No special support from the OS is required.

v

OS can help by providing libraries to implement dynamic loading.

Dynamic Linking

» Static linking: system libraries and program code combined by the loader
into the binary program image.

Dynamic Linking

» Static linking: system libraries and program code combined by the loader
into the binary program image.

» Dynamic linking: linking postponed until execution time.

Dynamic Linking

» Static linking: system libraries and program code combined by the loader
into the binary program image.

» Dynamic linking: linking postponed until execution time.
e Useful for shared libraries.

Swapping

Swapping

» A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

Swapping

» A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

» Backing store: fast disk large enough to accommodate copies of all
memory images for all users.

operating b
system
P
(Dswapour | [POEH
process P,
(@) swapin
R
user ~___
space backing store

main memory

Swapping Cost

» Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

Swapping Cost

» Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

> If next processes to be put on CPU is not in memory, need to swap out
a process and swap in target process.

Swapping Cost

» Major part of swap time is transfer time; which is proportional to the
amount of memory swapped.

> If next processes to be put on CPU is not in memory, need to swap out
a process and swap in target process.

» Example:
« 100MB process swapping to hard disk with transfer rate of 50MB /sec.
» Swap out time of 2s + swap in of same sized process.
e Total context switch swapping component time of 4s.

Swapping on Mobile Systems (1/2)

» Not typically supported.

Swapping on Mobile Systems (1/2)

» Not typically supported.

» Flash memory based
» Small amount of space
e Limited number of write cycles
e Poor throughput between flash memory and CPU on mobile platform

Swapping on Mobile Systems (2/2)

» Instead use other methods to free memory if low.

Swapping on Mobile Systems (2/2)

» Instead use other methods to free memory if low.

» iOS asks apps to voluntarily relinquish allocated memory.

Swapping on Mobile Systems (2/2)

» Instead use other methods to free memory if low.

» iOS asks apps to voluntarily relinquish allocated memory.

» Read-only data thrown out and reloaded from flash if needed.

Swapping on Mobile Systems (2/2)

v

Instead use other methods to free memory if low.

v

iOS asks apps to voluntarily relinquish allocated memory.

v

Read-only data thrown out and reloaded from flash if needed.

v

Failure to free can result in termination.

Swapping on Mobile Systems (2/2)

» Instead use other methods to free memory if low.
» iOS asks apps to voluntarily relinquish allocated memory.
» Read-only data thrown out and reloaded from flash if needed.

» Failure to free can result in termination.

» Android terminates apps if low free memory, but first writes application
state to flash for fast restart.

Contiguous Memory Allocation

Contiguous Allocation (1/2)

» Main memory must support both OS and user processes.

Contiguous Allocation (1/2)

» Main memory must support both OS and user processes.

» Limited resource, must allocate efficiently.

Contiguous Allocation (1/2)

» Main memory must support both OS and user processes.

» Limited resource, must allocate efficiently.

» Contiguous allocation is an early method.

Contiguous Allocation (1/2)

» Main memory must support both OS and user processes.

v

Limited resource, must allocate efficiently.

v

Contiguous allocation is an early method.

» Main memory usually into two partitions:

» Resident OS and user processes memory address.
e Each process contained in single contiguous section of memory.

Contiguous Allocation (2/2)

» Relocation registers used to protect user processes from each other, and
from changing OS code and data.

limit relocation
register register
logical physical
address yes address
CPU < O memory

no

trap: addressing error

Contiguous Allocation (2/2)

» Relocation registers used to protect user processes from each other, and
from changing OS code and data.

 Base register contains value of smallest physical address.

limit relocation
register register
logical physical
address yes address
CPU < O memory

no

trap: addressing error

Contiguous Allocation (2/2)

» Relocation registers used to protect user processes from each other, and
from changing OS code and data.
 Base register contains value of smallest physical address.
e Limit register contains range of logical addresses.

limit relocation
register register
logical physical
address yes address
CPU < O memory

no

trap: addressing error

Contiguous Allocation (2/2)

» Relocation registers used to protect user processes from each other, and
from changing OS code and data.
 Base register contains value of smallest physical address.
e Limit register contains range of logical addresses.
e MMU maps logical address dynamically.

limit relocation
register register
logical physical
address yes address
CPU < O memory

no

trap: addressing error

Multiple-Partition Allocation (1/2)

» Memory is divided into several fixed-sized partitions.

0s 08 0os 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> I:> process 10

process 2 process 2 process 2 process 2

Multiple-Partition Allocation (1/2)

» Memory is divided into several fixed-sized partitions.

» Each partition may contain exactly one process.

0s 08 0os 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> I:> process 10

process 2 process 2 process 2 process 2

Multiple-Partition Allocation (1/2)

» Memory is divided into several fixed-sized partitions.
» Each partition may contain exactly one process.

» Degree of multiprogramming limited by number of partitions.

0s 08 0os 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> I:> process 10

process 2 process 2 process 2 process 2

Multiple-Partition Allocation (1/2)

v

Memory is divided into several fixed-sized partitions.

v

Each partition may contain exactly one process.

v

Degree of multiprogramming limited by number of partitions.

When a partition is free, a process is selected from the input queue and
is loaded into the free partition.

v

0s 08 0os 0s
process 5 process 5 process 5 process 5
process 9 process 9
process 8 |:> |:> I:> process 10

process 2 process 2 process 2 process 2

Multiple-Partition Allocation (2/2)

» Variable-partition sizes for efficiency (sized to a given process’ needs).

Multiple-Partition Allocation (2/2)

» Variable-partition sizes for efficiency (sized to a given process’ needs).

» Hole: block of available memory.

Multiple-Partition Allocation (2/2)

» Variable-partition sizes for efficiency (sized to a given process’ needs).

» Hole: block of available memory.

» When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

Multiple-Partition Allocation (2/2)

v

Variable-partition sizes for efficiency (sized to a given process’ needs).

v

Hole: block of available memory.

v

When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

v

Process exiting frees its partition, adjacent free partitions combined.

Multiple-Partition Allocation (2/2)

v

Variable-partition sizes for efficiency (sized to a given process’ needs).

v

Hole: block of available memory.

v

When a process arrives, it is allocated memory from a hole large enough
to accommodate it.

v

Process exiting frees its partition, adjacent free partitions combined.

v

OS maintains information about: allocated partitions and free partitions
(holes).

Dynamic Storage-Allocation Problem

» How to satisfy a request of size n from a list of free holes?

Dynamic Storage-Allocation Problem

» How to satisfy a request of size n from a list of free holes?

» First-fit: allocate the first hole that is big enough

Dynamic Storage-Allocation Problem

» How to satisfy a request of size n from a list of free holes?

» First-fit: allocate the first hole that is big enough

> Best-fit: allocate the smallest hole that is big enough

e Must search entire list, unless ordered by size.
o Produces the smallest leftover hole.

Dynamic Storage-Allocation Problem

» How to satisfy a request of size n from a list of free holes?

v

First-fit: allocate the first hole that is big enough

v

Best-fit: allocate the smallest hole that is big enough

e Must search entire list, unless ordered by size.
o Produces the smallest leftover hole.

v

Worst-fit: allocate the largest hole

* Must also search entire list.
* Produces the largest leftover hole.

Dynamic Storage-Allocation Problem

» How to satisfy a request of size n from a list of free holes?

v

First-fit: allocate the first hole that is big enough

v

Best-fit: allocate the smallest hole that is big enough

e Must search entire list, unless ordered by size.
o Produces the smallest leftover hole.

v

Worst-fit: allocate the largest hole

* Must also search entire list.
* Produces the largest leftover hole.

v

First-fit and best-fit better than worst-fit in terms of speed and storage
utilization.

Fragmentation

» External fragmentation: total memory space exists to satisfy a request,
but it is not contiguous.

Fragmentation

» External fragmentation: total memory space exists to satisfy a request,
but it is not contiguous.

» Internal fragmentation: allocated memory may be slightly larger than
requested memory; this size difference is memory internal to a partition,
but not being used.

External Fragmentation

» Compaction: a solution to the problem of external fragmentation.

External Fragmentation

» Compaction: a solution to the problem of external fragmentation.

» Shuffle memory contents to place all free memory together in one large
block.

External Fragmentation

» Compaction: a solution to the problem of external fragmentation.

» Shuffle memory contents to place all free memory together in one large
block.

» Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

External Fragmentation

» Compaction: a solution to the problem of external fragmentation.

v

Shuffle memory contents to place all free memory together in one large
block.

v

Another possible solution to the external fragmentation problem:
permit the logical address space of the processes to be noncontiguous.

v

Two techniques:

» Segmentation
e Paging

Segmentation

Segmentation

» Memory-management scheme supports user view of memory.

subroutine

main
program

logical address

Segmentation

» Memory-management scheme supports user view of memory.

» A program is a collection of segments.

subroutine

main
program

logical address

Segmentation

» Memory-management scheme supports user view of memory.
» A program is a collection of segments.

» A segment is a logical unit such as:
° l\/lain program subroutine
e Procedure
¢ Function
» Object

main
program

logical address

Logical View of Segmentation

_ 1

1 4
|
|

w

4

user space physical memory space

Segmentation Architecture

» Logical address consists of a tuple: (segment number,offset)

Segmentation Architecture

» Logical address consists of a tuple: (segment number,offset)

» Segment table: maps two-dimensional user-defined addresses into
one-dimensional physical address.

Segmentation Architecture

» Logical address consists of a tuple: (segment number,offset)

» Segment table: maps two-dimensional user-defined addresses into
one-dimensional physical address.

» Each table entry has:
e Base: contains the starting physical address where the segments reside in

memory.
e Limit: specifies the length of the segment.

Segmentation Hardware

CPU

limit |base

no

A

segment
table

trap: addressing error

physical memory

Segmentation Example

ﬁume
segment 3 \
|

lsegment 0|

symbol
segment 0 table
Timit

sart segment 4

ron-o
8

4700

segment 1 segment 2

logical address space

segment table

> A reference to byte 53 of segment 2:

Isegment

lsegment 2|

lsegment 4|

lsegment 1

physical memory

Segmentation Example

1)
|

subroutine
segmenta lsegment 0|

symbol
segment 0 table

’—‘/

sart segment 4

son-o
s
8

Isegment
1000 | 4700
segment table
lsegment 2|
4
logical address space lsegment 4|
lsegment 1

physical memory

» A reference to byte 53 of segment 2: 4300 + 53 = 4353

Segmentation Example

1)

subroutine
segmenta lsegment 0|

symbol
segment 0 table
Timit | base
Sart segment 4 0[1000 | 1400
1| 400 | 6300
2| 400 | 4300
3| 1100 | 3200 kegment
4| 1000 | 4700
segment table
lsegment 2|
4
logical address space lsegment 4|
lsegment 1

physical memory

» A reference to byte 53 of segment 2: 4300 + 53 = 4353
> A reference to byte 852 of segment 3:

Segmentation Example

D)

subroutine
segmenta lsegment 0|

symbol
segment 0 table

sart segment 4

i af

son-o
s
8

Isegment
1000 | 4700
segment table
lsegment 2|
4
logical address space lsegment 4|
lsegment 1

physical memory

» A reference to byte 53 of segment 2: 4300 + 53 = 4353
> A reference to byte 852 of segment 3: 3200 + 852 = 4052

Segmentation Example

D)

subroutine
segmenta lsegment 0|

symbol
segment 0 table

sart segment 4

i af

son-o
s
8

Isegment
1000 | 4700

segment table

lsegment 2|

logical address space lsegment 4

lsegment 1

physical memory

» A reference to byte 53 of segment 2: 4300 + 53 = 4353
> A reference to byte 852 of segment 3: 3200 + 852 = 4052
> A reference to byte 1222 of segment 0:

Segmentation Example

o)

subroutine
segmenta lsegment 0|
400

symbol
segment 0 table

segment 4

\]

son-o
s
8

Isegment

1000 | 4700

segment table

lsegment 2|

logical address space lsegment 4

lsegment 1

physical memory

» A reference to byte 53 of segment 2: 4300 + 53 = 4353
> A reference to byte 852 of segment 3: 3200 + 852 = 4052
> A reference to byte 1222 of segment 0: trap to OS

Summary

Summary

» Main memory

Summary

» Main memory

» Address protection: base + limit

Summary

» Main memory

» Address protection: base + limit

» Address binding: compile time, load time, execution time

Summary

» Main memory

v

Address protection: base + limit

v

Address binding: compile time, load time, execution time

v

Logical and physical address, MMU

Summary

» Main memory

v

Address protection: base + limit

v

Address binding: compile time, load time, execution time

v

Logical and physical address, MMU

v

Swapping: backing store, swapping cost

Summary

» Main memory

v

Address protection: base + limit

v

Address binding: compile time, load time, execution time

v

Logical and physical address, MMU

v

Swapping: backing store, swapping cost

» Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

Summary

» Main memory

» Address protection: base + limit

» Address binding: compile time, load time, execution time
» Logical and physical address, MMU

» Swapping: backing store, swapping cost

» Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

» External and internal fragmentation: compaction, segmentation, paging

Summary

» Main memory

» Address protection: base + limit

» Address binding: compile time, load time, execution time
» Logical and physical address, MMU

» Swapping: backing store, swapping cost

» Contiguous memory allocation: partitions, holes, first-fit, best-fit, worst-
fit

» External and internal fragmentation: compaction, segmentation, paging

» Segmentation: noncontiguous address, user view of memory

Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

