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Background

I Processes can execute concurrently.

I Concurrent access to shared data may result in data inconsistency.

I Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes.

https://tinyurl.com/2yjcpx75
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Producer-Consumer Problem

I The producer-consumer problem.

I Having an integer counter that keeps track of the number of full buffers.

• Initially, counter is set to 0.
• The producer produces a new buffer: increment the counter
• The consumer consumes a buffer: decrement the counter
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Producer

I Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE); /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}
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Consumer

I Consumer

while (true) {

while (counter == 0); /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}
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Race Condition

I counter++ could be implemented as
register1 = counter

register1 = register1 + 1

counter = register1

I counter-- could be implemented as
register2 = counter

register2 = register2 - 1

counter = register2

I Consider this execution interleaving with count = 5 initially:

S0: producer: register1 = counter: register1 = 5

S1: producer: register1 = register1 + 1: register1 = 6

S2: consumer: register2 = counter: register2 = 5

S3: consumer: register2 = register2 - 1: register2 = 4

S4: producer: counter = register1: counter = 6

S5: consumer: counter = register2: counter = 4
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What’s The Output?

int counter = 0;

void* thread_func(void *arg) {

counter++;

printf("Job %d started.\n", counter);

sleep(2);

printf("Job %d finished.\n", counter);

return NULL;

}

int main(void) {

pthread_t t1, t2;

pthread_create(&t1, NULL, &thread_func, NULL);

pthread_create(&t2, NULL, &thread_func, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

return 0;

}
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What’s The Output?

Job 1 started.

Job 2 started.

Job 2 finished.

Job 2 finished.
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The Critical-Section (CS)
Problem
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The Critical-Section Problem (1/2)

I Consider system of n processes {p0, p1, · · · , pn−1}.

I Each process has CS segment of code.

• Process may be changing common variables, updating table, writing file, etc.
• When one process in CS, no other may be in its CS.
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The Critical-Section Problem (2/2)

I Each process must ask permission to enter CS in entry section, may follow
CS with exit section, then remainder section.

I General structure of process Pi is below:
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CS Problem Solution Requirements (1/3)

I Mutual Exclusion: if process Pi is executing in its CS, then no other
processes can be executing in their CSs.
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CS Problem Solution Requirements (2/3)

I Progress: if no process is executing in its CS and there exist some pro-
cesses that wish to enter their CS, then the selection of the processes
that will enter the CS next cannot be postponed indefinitely.
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CS Problem Solution Requirements (3/3)

I Bounded Waiting: a bound must exist on the number of times that
other processes are allowed to enter their CSs after a process has made
a request to enter its CS and before that request is granted.
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CS Handling in OS

I Two approaches depending on if kernel is preemptive or non-preemptive.

I Preemptive: allows preemption of process when running in kernel mode.

I Non-preemptive: runs until exits kernel mode, blocks, or voluntarily yields
CPU.

• Essentially free of race conditions in kernel mode.
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CS Solutions

I Peterson’s solution

I Mutex lock

I Semaphore

I Monitor
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Peterson’s Solution
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Peterson’s Solution

I Two-process solution.

I The two processes share two variables:
• int turn
• boolean flag[2]

I turn: indicates whose turn it is to enter the CS.

I flag: indicates if a process is ready to enter the CS, i.e.,
flag[i] = true implies that process Pi is ready.
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Algorithm for Process Pi
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CS Requirements

I Provable that the three CS requirement are met:

1. Mutual exclusion is preserved:
Pi enters CS only if: either flag[j] = false or turn = i

2. Progress requirement is satisfied.
3. Bounded-waiting requirement is met.
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Mutex Locks
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Mutex Locks

I Protect a CS by first acquire() a lock then release() the lock.
• Boolean variable indicating if lock is available or not.

I Calls to acquire() and release() must be atomic.
• Usually implemented via hardware atomic instructions.

I But this solution requires busy waiting.
• This lock therefore called a spinlock.
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acquire() and release()

acquire() {

while (!available); /* busy wait */

available = false;

}

release() {

available = true;

}
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pthread Mutexes

I Mutexes are represented by the pthread mutex t object.

I pthread mutex lock() locks (acquires) a pthreads mutex.

int pthread_mutex_lock(pthread_mutex_t *mutex);

I pthread mutex unlock() unlocks (releases) a pthreads mutex.

int pthread_mutex_unlock(pthread_mutex_t *mutex);
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What’s The Output?
int counter = 0;

pthread_mutex_t lock;

void* thread_func(void *arg) {

pthread_mutex_lock(&lock);

counter++;

printf("Job %d started.\n", counter);

sleep(2);

printf("Job %d finished.\n", counter);

pthread_mutex_unlock(&lock);

return NULL;

}

int main(void) {

pthread_t t1, t2;

pthread_mutex_init(&lock, NULL);

pthread_create(&t1, NULL, &thread_func, NULL);

pthread_create(&t2, NULL, &thread_func, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

pthread_mutex_destroy(&lock);

return 0;

}
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What’s The Output?

Job 1 started.

Job 1 finished.

Job 2 started.

Job 2 finished.
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Semaphores
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Semaphore

I Synchronization tool that provides more sophisticated ways (than Mutex
locks) for process to synchronize their activities.

I Semaphore S: integer variable.

I Accessed via two atomic operations: wait() and signal()
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wait() and signal()

wait(S) {

while (S <= 0); // busy wait

S--;

}

signal(S) {

S++;

}

30 / 57



Counting and Binary Semaphore

I Counting semaphore: integer value can range over an unrestricted domain.

I Binary semaphore: integer value can range only between 0 and 1.
• Same as a mutex lock.
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Semaphore Usage (1/2)

I Initialize the semaphore to the number of available resources.

I Call wait() before using a resource.

I Call signal() after releasing a resource.

I If S = 0: all resources are used, and processes that wish to use a resource
will block until the count becomes greater than 0.
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Semaphore Usage (2/2)

I Consider P1 and P2 that require C1 to happen before C2.

I Create a semaphore S initialized to 0.

// Process P1

C1;

signal(S);

// Process P2

wait(S);

C2;

I The implementation still suffers from busy waiting.
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Semaphore Implementation with no Busy Waiting (1/2)

I With each semaphore there is an associated waiting queue.

I Each entry in a waiting queue has two data items:
• Value (of type integer).
• Pointer to next record in the list.

typedef struct {

int value;

struct process *list;

} semaphore;
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Semaphore Implementation with no Busy Waiting (2/2)

I block: place the process invoking the operation on the appropriate wait-
ing queue.

I wakeup: remove one of processes in the waiting queue and place it in
the ready queue.

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

// add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

// remove a process P from S->list;

wakeup(P);

}

}
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Deadlock

I Deadlock: two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes.

I Let S and Q be two semaphores initialized to 1.
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Starvation

I Starvation: indefinite blocking.

I A process may never be removed from the semaphore queue in which it
is suspended.

I If we remove processes from the list associated with a semaphore in LIFO
(last-in, first-out) order.
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POSIX Semaphore

I sem open() creates a new semaphore or opens an existing one.

sem_t *sem_open(const char * name , int oflag , ...);

I sem wait() decrements the value of the semaphore.

int sem_wait(sem_t *sem);

I sem post() increments the value of the semaphore.

int sem_post(sem_t *sem);
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Parent-Child Example

void parent() {

sem_t *sem_id = sem_open(sem_name, O_CREAT, 0600, 0);

// The parent waits for its child to print

sem_wait(sem_id);

printf("Parent: Child Printed!\n");

sem_close(sem_id);

sem_unlink(sem_name);

}

void child() {

sem_t *sem_id = sem_open(sem_name, O_CREAT, 0600, 0);

printf("Child: Hello parent!\n");

sem_post(sem_id);

}
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Monitors
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Problems with Semaphores

I Incorrect use of semaphore operations:

• signal(mutex) ... wait(mutex)
• wait(mutex) ... wait(mutex)
• Omitting of wait(mutex) or signal(mutex) (or both)

I Deadlock and starvation are possible.

42 / 57



Problems with Semaphores

I Incorrect use of semaphore operations:
• signal(mutex) ... wait(mutex)

• wait(mutex) ... wait(mutex)
• Omitting of wait(mutex) or signal(mutex) (or both)

I Deadlock and starvation are possible.

42 / 57



Problems with Semaphores

I Incorrect use of semaphore operations:
• signal(mutex) ... wait(mutex)
• wait(mutex) ... wait(mutex)

• Omitting of wait(mutex) or signal(mutex) (or both)

I Deadlock and starvation are possible.

42 / 57



Problems with Semaphores

I Incorrect use of semaphore operations:
• signal(mutex) ... wait(mutex)
• wait(mutex) ... wait(mutex)
• Omitting of wait(mutex) or signal(mutex) (or both)

I Deadlock and starvation are possible.

42 / 57



Problems with Semaphores

I Incorrect use of semaphore operations:
• signal(mutex) ... wait(mutex)
• wait(mutex) ... wait(mutex)
• Omitting of wait(mutex) or signal(mutex) (or both)

I Deadlock and starvation are possible.

42 / 57



Monitors

I A high-level abstraction for process synchronization.

I Abstract data type, internal variables only accessible by code within the
procedure.

I Only one process may be active within the monitor at a time.

monitor monitor_name {

/* shared variable declarations */

function P1(... ) { ... }

function P2(...) { ... }

function Pn(...) { ... }

initialization code(...) { ... }

}
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A Monitor
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Condition Variables

I condition x, y;

I Two operations are allowed on a condition variable:

• x.wait(): a process that invokes the operation is suspended until
x.signal().

• x.signal(): resumes one of processes (if any) that invoked x.wait().
• If no x.wait() on the variable, then it has no effect on the variable.
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A Monitor with Condition Variables
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Condition Variables Choices

I If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?

• Both Q and P cannot execute in parallel. If Q is resumed, then P must
wait.

I Options include:

• Signal and wait: P waits until Q either leaves the monitor or it waits for
another condition.

• Signal and continue: Q waits until P either leaves the monitor or it waits
for another condition.
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Resuming Processes within a Monitor

I If several processes queued on condition x, and x.signal() executed,
which should be resumed?

I FCFS (First-Come, First-Served) frequently not adequate.

I Conditional-wait construct of the form x.wait(c):
• Where c is priority number.
• Process with lowest number (highest priority) is scheduled next.
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Single Resource Allocation

I Allocate a single resource among competing processes using priority num-
bers that specify the maximum time a process plans to use the resource.

R.acquire(t);

...

access the resource;

...

R.release();

I Where R is an instance of type ResourceAllocator monitor.
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A Monitor to Allocate Single Resource

monitor ResourceAllocator {

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = true;

}

void release() {

busy = false;

x.signal();

}

initialization code() {

busy = false;

}

}
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Readers and Writers Problem
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Readers and Writers Problem (1/3)

I A shared data set among a number of concurrent processes:
• Readers: only read the data set; they do not perform any updates.
• Writers: can both read and write.

I Problem: allow multiple readers to read at the same time, only one single
writer can access the shared data at the same time.

I Shared Data
• Semaphore rw mutex initialized to 1.
• Semaphore mutex initialized to 1.
• Integer read count initialized to 0.
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Readers and Writers Problem (2/3)

I The writer process.

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);
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Readers and Writers Problem (3/3)

I The reader process.

do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read_count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);
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Summary

I Access to shared data

I The critical-section problem

I Requirements: mutual-exclusion, progress, bounding waiting

I CS solutions:
• Peterson solution, mutex lock, semaphore, and monitor

I Reader/writer problem
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Questions?
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