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CPU Scheduling

I CPU scheduling is the basis of multiprogrammed OSs.

I By switching the CPU among processes, the OS makes the computer
more productive.
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Basic Concepts

I In a single-processor system, only one process can run at a time.

I Others must wait until the CPU is free and can be rescheduled.

I The objective of multiprogramming is to have some process running at
all times, to maximize CPU utilization.
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Basic Concepts

I CPU-I/O burst cycle: process execution
consists of a cycle of CPU execution
and I/O wait.

I CPU burst followed by I/O burst.

I CPU burst distribution is of main
concern.
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CPU Scheduler

I CPU scheduler selects from among the processes in ready queue, and
allocates the CPU to one of them.

I CPU scheduling decisions may take place when a process:

1. Terminates.
2. Switches from running to waiting (e.g., an I/O request).
3. Switches from running to ready (e.g., interrupt).
4. Switches from waiting to ready (e.g., I/O completion).

I For situations 1 and 2, there is no scheduling choice, as a new process
must be selected for execution (non-preemptive).

I But, There is a choice, for situations 3 and 4 (preemptive).
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Scheduling Criteria

I Different CPU-scheduling algorithms have different properties.

I CPU utilization: keep the CPU as busy as possible (Max).

I Throughput: # of completed processes per time unit (Max).

I Turnaround time: amount of time to execute a particular process (Min).

I Waiting time: amount of time a process has been waiting in the ready
queue (Min).

I Response time: amount of time it takes from when a request was sub-
mitted until the first response is produced (Min).
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Scheduling Algorithms
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Scheduling Algorithms

I First-Come, First-Served Scheduling

I Shortest-Job-First Scheduling

I Priority Scheduling

I Round-Robin Scheduling

I Multilevel Queue Scheduling
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First-Come, First-Served (FCFS)
Scheduling
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FCFS Scheduling (1/2)

I Suppose that the processes arrive in the order: P1, P2, P3

I Waiting time for P1 = 0; P2 = 24; P3 = 27

I Average waiting time: 0+24+27
3 = 17

I FCFS scheduling is non-preemptive: process keeps the CPU until it re-
leases the CPU (either by terminating or by requesting I/O).

I Convoy effect: all the other processes wait for the one big process to get
off the CPU.
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FCFS Scheduling (2/2)

I Suppose that the processes arrive in the order: P2, P3, P1

I Waiting time for P1 = 6; P2 = 0; P3 = 3

I Average waiting time: 6+0+3
3 = 3

I Much better than previous case.
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Shortest-Job-First (SJF)
Scheduling
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SJF Scheduling (1/2)

I Associate with each process the length of its next CPU burst.

I Use these lengths to schedule the process with the shortest time.

I SJF is optimal: gives minimum average waiting time for a given set of
processes.

I The difficulty is knowing the length of the next CPU request.
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SJF Scheduling (2/2)

I Select the processes according to their burst time (from shorter to
longer).

I Waiting time for P1 = 3; P2 = 16; P3 = 9, P4 = 0

I Average waiting time: 3+16+9+0
4 = 7
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Determining Length of Next CPU Burst

I Estimate the length, and pick process with shortest predicted next CPU
burst.

I The next CPU burst

1. tn = actual length of nth CPU burst
2. τn+1 = predeicted value for the next CPU burst
3. τn+1 = αtn + (1− α)τn, where 0 ≤ α ≤ 1

I α = 0 then τn+1 = τn

I α = 1 then τn+1 = tn

I Commonly, α set to 1
2
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Preemptive SJF

I The SJF algorithm can be either preemptive or non-preemptive.

I Preemptive version called shortest-remaining-time-first
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Example of Shortest-Remaining-Time-First

I Now we add the concepts of varying arrival times and preemption to the
analysis.

I Average waiting time: (10−1)+(1−1)+(17−2)+(5−3)
4 = 26

4 = 6.5
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Priority Scheduling
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Priority Scheduling (1/2)

I A priority number (integer) is associated with each process.

I The CPU is allocated to the process with the highest priority.
• Smallest integer = Highest priority
• Preemptive and non-preemptive

I SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time.

I Problem: starvation - low priority processes may never execute

I Solution: aging - as time progresses increase the priority of the process
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Priority Scheduling (2/2)

I Average waiting time: 0+1+6+16+18
5 = 8.2
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Round-Robin (RR)
Scheduling
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RR Scheduling (1/2)

I Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds.

I After this time has elapsed, the process is preempted and added to the
end of the ready queue.

I If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once.

I No process waits more than (n − 1)q time units.
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RR Scheduling (2/2)

I Time quantum q = 4

I Average waiting time: (10−4)+4+7
3 = 5.66
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Time Quantum and Context Switch Time (1/2)

I Timer interrupts every quantum to schedule next process.

I Performance
• q large ⇒ FIFO
• q small ⇒ q must be large with respect to context switch, otherwise

overhead is too high.
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Time Quantum and Context Switch Time (2/2)

I q should be large compared to context switch time.
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Multilevel Queue Scheduling
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Multilevel Queue Scheduling (1/2)

I Ready queue consists of multiple queues.

27 / 49



Multilevel Queue Scheduling (2/2)

I A process can move between the various queues.

I Multilevel queue scheduler defined by the following parameters:

• Number of queues
• Scheduling algorithms for each queue
• Method used to determine which queue a process will enter when that

process needs service
• Scheduling among the queues
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Multilevel Queue Scheduling - Example

I For example, three queues:
• Q0: RR with time quantum 8 milliseconds
• Q1: RR time quantum 16 milliseconds
• Q2: FCFS

I A new job enters queue Q0 which is served RR:
• When it gains CPU, job receives 8 milliseconds.
• If it does not finish in 8 milliseconds, job is moved to queue Q1.

I At Q1 job is again served RR and receives 16 additional milliseconds.
• If it still does not complete, it is preempted and moved to queue Q2.
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Linux Scheduling (1/2)

I Completely Fair Scheduler (CFS)

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.
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Linux Scheduling (2/2)

I Quantum calculated based on nice value from -20 to +19.
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Modifying the Nice Value

I nice() increments a process’s nice value by inc and returns the newly
updated value.

I Only processes owned by root may provide a negative value for inc.

#include <unistd.h>

int nice(int inc);
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Retrieving and Modifying Priorities

I The getpriority() and setpriority() system calls allow a process
to retrieve and change its own nice value or that of another process.

#include <sys/resource.h>

int getpriority(int which, id_t who);

int setpriority(int which, id_t who, int prio);
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Thread Scheduling
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Thread Scheduling (1/2)

I Distinction between user-level and kernel-level threads.

I Process-Contention Scope (PCS)
• In many-to-one and many-to-many models.
• Scheduling competition is within the process.

I System-Contention Scope (SCS)
• In one-to-one model.
• Scheduling competition among all threads in system.
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Pthread Scheduling

I API allows specifying either PCS or SCS during thread creation.
• PTHREAD SCOPE PROCESS schedules threads using PCS scheduling.
• PTHREAD SCOPE SYSTEM schedules threads using SCS scheduling.

I pthread attr setscope and pthread attr getscope set/get con-
tention scope attribute in thread attributes object.

#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int scope);

int pthread_attr_getscope(const pthread_attr_t *attr, int *scope);
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Pthread Scheduling API

int main(int argc, char *argv[]) {

pthread_t t1, t2;

pthread_attr_t attr;

pthread_attr_init(&attr);

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

pthread_create(&t1, &attr, thread_func, NULL);

pthread_create(&t2, &attr, thread_func, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

}

void *thread_func(void *param) {

/* do some work ... */

pthread_exit(0);

}
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Multi-Processor Scheduling
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Multiple-Processor Scheduling

I Asymmetric multiprocessing

• Only one processor does all scheduling decisions, I/O processing, and
other system activities.

• The other processors execute only user code.

I Symmetric multiprocessing (SMP)

• Each processor is self-scheduling
• All processes in common ready queue, or each has its own private queue

of ready processes.
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Processor Affinity

I Processor affinity: keep a process running on the same processor.

I Soft affinity: the OS attempts to keep a process on a single processor,
but it is possible for a process to migrate between processors.

I Hard affinity: allowing a process to specify a subset of processors on
which it may run.
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CPU Affinity

I sched setaffinity() and sched getaffinity() sets/gets the CPU
affinity of the process specified by pid.

#define _GNU_SOURCE

#include <sched.h>

int sched_setaffinity(pid_t pid, size_t len, cpu_set_t *set);

int sched_getaffinity(pid_t pid, size_t len, cpu_set_t *set);
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CPU Affinity Macros

I CPU ZERO() initializes set to be empty.

I CPU SET() adds the CPU cpu to set.

I CPU CLR() removes the CPU cpu from set.

I CPU ISSET() returns true if the CPU cpu is a member of set.

#define _GNU_SOURCE

#include <sched.h>

void CPU_ZERO(cpu_set_t *set);

void CPU_SET(int cpu, cpu_set_t *set);

void CPU_CLR(int cpu, cpu_set_t *set);

int CPU_ISSET(int cpu, cpu_set_t *set);
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CPU Affinity Macros

I The process identified by pid runs on any CPU other than the first
CPU of a four-processor system.

cpu_set_t set;

CPU_ZERO(&set);

CPU_SET(1, &set);

CPU_SET(2, &set);

CPU_SET(3, &set);

sched_setaffinity(pid, sizeof(set), &set);
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Summary

I CPU scheduling

I Scheduling criteria: cpu utilization, throughput, turnaround time,
waiting time, response time

I Scheduling algorithms
• FCFS, SJF, Priority, RR, Multilevel

I Thread scheduling: PCS and SCS

I Multi-processor scheduling: SMP, processor affinity
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Questions?
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