
Processes - Part II

Amir H. Payberah
payberah@kth.se

2022

Threads

1 / 49

Thread
A basic unit of CPU utilization.

https://tinyurl.com/e8crhtne

2 / 49

Threads (1/2)

I A traditional process: has a single thread.

I Multiple threads in a process: performing more than one task at a time.

I Threads in a process share code section, data section, and other OS
resources, e.g., open files.

3 / 49

Threads (1/2)

I A traditional process: has a single thread.

I Multiple threads in a process: performing more than one task at a time.

I Threads in a process share code section, data section, and other OS
resources, e.g., open files.

3 / 49

Threads (1/2)

I A traditional process: has a single thread.

I Multiple threads in a process: performing more than one task at a time.

I Threads in a process share code section, data section, and other OS
resources, e.g., open files.

3 / 49

Threads (2/2)

I Multiple tasks of an application can be implemented by separate threads.

• Update display
• Fetch data
• Spell checking
• Answer a network request

4 / 49

Threads - Example

I Multi-threaded web-server architecture

5 / 49

Threads Benefits

I Responsiveness: allow continued execution if part of process is blocked.

I Resource Sharing: threads share resources of process, easier than shared
memory or message passing.

I Economy: thread switching has lower overhead than context switching.

I Scalability: process can take advantage of multiprocessor architectures.

6 / 49

Threads Benefits

I Responsiveness: allow continued execution if part of process is blocked.

I Resource Sharing: threads share resources of process, easier than shared
memory or message passing.

I Economy: thread switching has lower overhead than context switching.

I Scalability: process can take advantage of multiprocessor architectures.

6 / 49

Threads Benefits

I Responsiveness: allow continued execution if part of process is blocked.

I Resource Sharing: threads share resources of process, easier than shared
memory or message passing.

I Economy: thread switching has lower overhead than context switching.

I Scalability: process can take advantage of multiprocessor architectures.

6 / 49

Threads Benefits

I Responsiveness: allow continued execution if part of process is blocked.

I Resource Sharing: threads share resources of process, easier than shared
memory or message passing.

I Economy: thread switching has lower overhead than context switching.

I Scalability: process can take advantage of multiprocessor architectures.

6 / 49

Multi-core Programming

7 / 49

Multi-core Systems

I Users need more computing performance: single-CPU → multi-CPU

I A similar trend in system design: multi-core systems
• Each core appears as a separate processor.

I Multi-threaded programming
• Improves concurrency and more efficient use of multiple cores.

8 / 49

Multi-core Systems

I Users need more computing performance: single-CPU → multi-CPU

I A similar trend in system design: multi-core systems
• Each core appears as a separate processor.

I Multi-threaded programming
• Improves concurrency and more efficient use of multiple cores.

8 / 49

Multi-core Systems

I Users need more computing performance: single-CPU → multi-CPU

I A similar trend in system design: multi-core systems
• Each core appears as a separate processor.

I Multi-threaded programming
• Improves concurrency and more efficient use of multiple cores.

8 / 49

Concurrency vs. Parallelism (1/2)

I Concurrency: supporting more than one task by allowing all the tasks to
make progress.

• A scheduler providing concurrency.

I Concurrent execution on a single-core system.

9 / 49

Concurrency vs. Parallelism (1/2)

I Concurrency: supporting more than one task by allowing all the tasks to
make progress.

• A scheduler providing concurrency.

I Concurrent execution on a single-core system.

9 / 49

Concurrency vs. Parallelism (1/2)

I Concurrency: supporting more than one task by allowing all the tasks to
make progress.

• A scheduler providing concurrency.

I Concurrent execution on a single-core system.

9 / 49

Concurrency vs. Parallelism (2/2)

I Parallelism: performing more than one task simultaneously.

I Parallelism on a multi-core system.

10 / 49

Concurrency vs. Parallelism (2/2)

I Parallelism: performing more than one task simultaneously.

I Parallelism on a multi-core system.

10 / 49

Types of Parallelism

I Data parallelism
• Distributes subsets of the same data across multiple cores, same operation

on each.

I Task parallelism
• Distributes threads across cores, each thread performing unique operation.

11 / 49

Types of Parallelism

I Data parallelism
• Distributes subsets of the same data across multiple cores, same operation

on each.

I Task parallelism
• Distributes threads across cores, each thread performing unique operation.

11 / 49

Multi-threading Models

12 / 49

User Threads and Kernel Threads

I User threads: managed by user-level threads library.

• Three primary thread libraries:
• POSIX pthreads
• Windows threads
• Java threads

I Kernel threads: supported by the Kernel.

13 / 49

User Threads and Kernel Threads

I User threads: managed by user-level threads library.
• Three primary thread libraries:
• POSIX pthreads
• Windows threads
• Java threads

I Kernel threads: supported by the Kernel.

13 / 49

Multi-Threading Models

I Many-to-One

I One-to-One

I Many-to-Many

14 / 49

Many-to-One Model

I Many user-level threads mapped to single kernel thread.

I One thread blocking causes all to block.

I Multiple threads may not run in parallel on multi-core system because
only one may be in kernel at a time.

I Few systems currently use this model.
• Solaris green threads
• GNU portable threads

15 / 49

Many-to-One Model

I Many user-level threads mapped to single kernel thread.

I One thread blocking causes all to block.

I Multiple threads may not run in parallel on multi-core system because
only one may be in kernel at a time.

I Few systems currently use this model.
• Solaris green threads
• GNU portable threads

15 / 49

Many-to-One Model

I Many user-level threads mapped to single kernel thread.

I One thread blocking causes all to block.

I Multiple threads may not run in parallel on multi-core system because
only one may be in kernel at a time.

I Few systems currently use this model.
• Solaris green threads
• GNU portable threads

15 / 49

Many-to-One Model

I Many user-level threads mapped to single kernel thread.

I One thread blocking causes all to block.

I Multiple threads may not run in parallel on multi-core system because
only one may be in kernel at a time.

I Few systems currently use this model.
• Solaris green threads
• GNU portable threads

15 / 49

One-to-One Model

I Each user-level thread maps to one kernel thread.

I Creating a user-level thread creates a kernel thread.

I More concurrency than many-to-one.

I Number of threads per process sometimes restricted due to overhead.

I Examples:
• Windows
• Linux

16 / 49

One-to-One Model

I Each user-level thread maps to one kernel thread.

I Creating a user-level thread creates a kernel thread.

I More concurrency than many-to-one.

I Number of threads per process sometimes restricted due to overhead.

I Examples:
• Windows
• Linux

16 / 49

One-to-One Model

I Each user-level thread maps to one kernel thread.

I Creating a user-level thread creates a kernel thread.

I More concurrency than many-to-one.

I Number of threads per process sometimes restricted due to overhead.

I Examples:
• Windows
• Linux

16 / 49

One-to-One Model

I Each user-level thread maps to one kernel thread.

I Creating a user-level thread creates a kernel thread.

I More concurrency than many-to-one.

I Number of threads per process sometimes restricted due to overhead.

I Examples:
• Windows
• Linux

16 / 49

One-to-One Model

I Each user-level thread maps to one kernel thread.

I Creating a user-level thread creates a kernel thread.

I More concurrency than many-to-one.

I Number of threads per process sometimes restricted due to overhead.

I Examples:
• Windows
• Linux

16 / 49

Many-to-Many Model

I Allows many user-level threads to be mapped to many kernel threads.

I Allows the OS to create a sufficient number of kernel threads.

I Examples:
• Windows with the ThreadFiber package
• Otherwise not very common

17 / 49

Many-to-Many Model

I Allows many user-level threads to be mapped to many kernel threads.

I Allows the OS to create a sufficient number of kernel threads.

I Examples:
• Windows with the ThreadFiber package
• Otherwise not very common

17 / 49

Many-to-Many Model

I Allows many user-level threads to be mapped to many kernel threads.

I Allows the OS to create a sufficient number of kernel threads.

I Examples:
• Windows with the ThreadFiber package
• Otherwise not very common

17 / 49

Thread Libraries

18 / 49

Thread Libraries (1/2)

I Thread library provides programmer with API for creating and managing
threads.

I Two primary ways of implementing:
• Library entirely in user-space.
• Kernel-level library supported by the OS.

19 / 49

Thread Libraries (1/2)

I Thread library provides programmer with API for creating and managing
threads.

I Two primary ways of implementing:
• Library entirely in user-space.
• Kernel-level library supported by the OS.

19 / 49

Thread Libraries (2/2)

I Pthread
• Either a user-level or a kernel-level library.

I Windows thread
• Kernel-level library.

I Java thread
• Uses a thread library available on the host system.

20 / 49

Thread Libraries (2/2)

I Pthread
• Either a user-level or a kernel-level library.

I Windows thread
• Kernel-level library.

I Java thread
• Uses a thread library available on the host system.

20 / 49

Thread Libraries (2/2)

I Pthread
• Either a user-level or a kernel-level library.

I Windows thread
• Kernel-level library.

I Java thread
• Uses a thread library available on the host system.

20 / 49

21 / 49

Pthreads

I A POSIX API for thread creation and synchronization.

I Specification, not implementation.

I API specifies behavior of the thread library, implementation is up
to development of the library.

I Common in UNIX OSs, e.g., Solaris, Linux, Mac OS X

22 / 49

Pthreads

I A POSIX API for thread creation and synchronization.

I Specification, not implementation.

I API specifies behavior of the thread library, implementation is up
to development of the library.

I Common in UNIX OSs, e.g., Solaris, Linux, Mac OS X

22 / 49

Pthreads

I A POSIX API for thread creation and synchronization.

I Specification, not implementation.

I API specifies behavior of the thread library, implementation is up
to development of the library.

I Common in UNIX OSs, e.g., Solaris, Linux, Mac OS X

22 / 49

Pthreads

I A POSIX API for thread creation and synchronization.

I Specification, not implementation.

I API specifies behavior of the thread library, implementation is up
to development of the library.

I Common in UNIX OSs, e.g., Solaris, Linux, Mac OS X

22 / 49

Thread ID

I The thread ID (TID) is the thread analogue to the process ID (PID).

I The PID is assigned by the Linux kernel, and TID is assigned in the
Pthread library.

I Represented by pthread t.

I Obtaining a TID at runtime:

#include <pthread.h>

pthread_t pthread_self(void);

23 / 49

Thread ID

I The thread ID (TID) is the thread analogue to the process ID (PID).

I The PID is assigned by the Linux kernel, and TID is assigned in the
Pthread library.

I Represented by pthread t.

I Obtaining a TID at runtime:

#include <pthread.h>

pthread_t pthread_self(void);

23 / 49

Thread ID

I The thread ID (TID) is the thread analogue to the process ID (PID).

I The PID is assigned by the Linux kernel, and TID is assigned in the
Pthread library.

I Represented by pthread t.

I Obtaining a TID at runtime:

#include <pthread.h>

pthread_t pthread_self(void);

23 / 49

Thread ID

I The thread ID (TID) is the thread analogue to the process ID (PID).

I The PID is assigned by the Linux kernel, and TID is assigned in the
Pthread library.

I Represented by pthread t.

I Obtaining a TID at runtime:

#include <pthread.h>

pthread_t pthread_self(void);

23 / 49

Creating Threads

I pthread create() defines and launches a new thread.

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*thread_func)(void *), void *arg);

I thread func has the following signature:

void *thread_func(void *arg);

24 / 49

Creating Threads

I pthread create() defines and launches a new thread.

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*thread_func)(void *), void *arg);

I thread func has the following signature:

void *thread_func(void *arg);

24 / 49

Terminating Threads

I Terminating yourself by calling pthread exit().

#include <pthread.h>

void pthread_exit(void *retval);

I Terminating others by calling pthread cancel().

#include <pthread.h>

int pthread_cancel(pthread_t thread);

25 / 49

Terminating Threads

I Terminating yourself by calling pthread exit().

#include <pthread.h>

void pthread_exit(void *retval);

I Terminating others by calling pthread cancel().

#include <pthread.h>

int pthread_cancel(pthread_t thread);

25 / 49

Joining and Detaching Threads

I Joining allows one thread to block while waiting for the termination
of another.

I You use join if you care about what value the thread returns when
it is done, and use detach if you do not.

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

[https://computing.llnl.gov/tutorials/pthreads/#Joining]

26 / 49

Joining and Detaching Threads

I Joining allows one thread to block while waiting for the termination
of another.

I You use join if you care about what value the thread returns when
it is done, and use detach if you do not.

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

int pthread_detach(pthread_t thread);

[https://computing.llnl.gov/tutorials/pthreads/#Joining]

26 / 49

A Threading Example

void *thread_func(void *message) {

printf("%s\n", (const char *)message);

return message;

}

int main(void) {

pthread_t thread1, thread2;

const char *message1 = "Thread 1";

const char *message2 = "Thread 2";

// Create two threads, each with a different message.

pthread_create(&thread1, NULL, thread_func, (void *)message1);

pthread_create(&thread2, NULL, thread_func, (void *)message2);

// Wait for the threads to exit.

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

return 0;

}

27 / 49

Implicit Threading

28 / 49

Implicit Threading

I Increasing the number of threads: program correctness more difficult
with explicit threads.

I Implicit threading: creation and management of threads done by
compilers and run-time libraries rather than programmers.

I Four methods explored:
• Thread Pools
• Fork-Join
• OpenMP
• Grand Central Dispatch

29 / 49

Implicit Threading

I Increasing the number of threads: program correctness more difficult
with explicit threads.

I Implicit threading: creation and management of threads done by
compilers and run-time libraries rather than programmers.

I Four methods explored:
• Thread Pools
• Fork-Join
• OpenMP
• Grand Central Dispatch

29 / 49

Implicit Threading

I Increasing the number of threads: program correctness more difficult
with explicit threads.

I Implicit threading: creation and management of threads done by
compilers and run-time libraries rather than programmers.

I Four methods explored:
• Thread Pools
• Fork-Join
• OpenMP
• Grand Central Dispatch

29 / 49

Thread Pools

I Create a number of threads in a pool where they await work.

I Usually slightly faster to service a request with an existing thread
than create a new thread.

I Allows the number of threads in the application(s) to be bound to
the size of the pool.

30 / 49

Thread Pools

I Create a number of threads in a pool where they await work.

I Usually slightly faster to service a request with an existing thread
than create a new thread.

I Allows the number of threads in the application(s) to be bound to
the size of the pool.

30 / 49

Thread Pools

I Create a number of threads in a pool where they await work.

I Usually slightly faster to service a request with an existing thread
than create a new thread.

I Allows the number of threads in the application(s) to be bound to
the size of the pool.

30 / 49

Fork-Join (1/2)

I Multiple threads (tasks) are forked, and then joined.

31 / 49

Fork-Join (2/2)

32 / 49

Fork-Join (2/2)

32 / 49

OpenMP (1/2)

I Set of compiler directives and APIs for C, C++, FORTRAN.

I Identifies parallel regions: blocks of code that can run in parallel.

I #pragma omp parallel: create as many threads as there are cores.

I #pragma omp parallel for: run for loop in parallel.

33 / 49

OpenMP (1/2)

I Set of compiler directives and APIs for C, C++, FORTRAN.

I Identifies parallel regions: blocks of code that can run in parallel.

I #pragma omp parallel: create as many threads as there are cores.

I #pragma omp parallel for: run for loop in parallel.

33 / 49

OpenMP (1/2)

I Set of compiler directives and APIs for C, C++, FORTRAN.

I Identifies parallel regions: blocks of code that can run in parallel.

I #pragma omp parallel: create as many threads as there are cores.

I #pragma omp parallel for: run for loop in parallel.

33 / 49

OpenMP (2/2)

#include <omp.h>

#include <stdio.h>

int main(int argc, char *argv[]) {

/* sequential code */

#pragma omp parallel

{

printf("I am a parallel region.");

}

/* sequential code */

return 0;

}

34 / 49

Grand Central Dispatch

I Apple technology for Mac OS X and iOS: extensions to C, C++ API, and
run-time library.

I Allows identification of parallel sections.

I Block is in ˆ{ }: ˆ{ printf("I am a block"); }

I Blocks placed in dispatch queue.

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH QUEUE PRIORITY DEFAULT, 0);

dispatch_async(queue, ^{ printf("I am a block."); });

35 / 49

Grand Central Dispatch

I Apple technology for Mac OS X and iOS: extensions to C, C++ API, and
run-time library.

I Allows identification of parallel sections.

I Block is in ˆ{ }: ˆ{ printf("I am a block"); }

I Blocks placed in dispatch queue.

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH QUEUE PRIORITY DEFAULT, 0);

dispatch_async(queue, ^{ printf("I am a block."); });

35 / 49

Grand Central Dispatch

I Apple technology for Mac OS X and iOS: extensions to C, C++ API, and
run-time library.

I Allows identification of parallel sections.

I Block is in ˆ{ }: ˆ{ printf("I am a block"); }

I Blocks placed in dispatch queue.

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH QUEUE PRIORITY DEFAULT, 0);

dispatch_async(queue, ^{ printf("I am a block."); });

35 / 49

Grand Central Dispatch

I Apple technology for Mac OS X and iOS: extensions to C, C++ API, and
run-time library.

I Allows identification of parallel sections.

I Block is in ˆ{ }: ˆ{ printf("I am a block"); }

I Blocks placed in dispatch queue.

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH QUEUE PRIORITY DEFAULT, 0);

dispatch_async(queue, ^{ printf("I am a block."); });

35 / 49

Grand Central Dispatch

I Apple technology for Mac OS X and iOS: extensions to C, C++ API, and
run-time library.

I Allows identification of parallel sections.

I Block is in ˆ{ }: ˆ{ printf("I am a block"); }

I Blocks placed in dispatch queue.

dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH QUEUE PRIORITY DEFAULT, 0);

dispatch_async(queue, ^{ printf("I am a block."); });

35 / 49

Threading Issues

36 / 49

Threading Issues

I The fork() and exec() system calls

I Signal handling

I Thread-Local Storage (TLS)

I Thread cancellation

37 / 49

Threading Issues

I The fork() and exec() system calls

I Signal handling

I Thread-Local Storage (TLS)

I Thread cancellation

37 / 49

Threading Issues

I The fork() and exec() system calls

I Signal handling

I Thread-Local Storage (TLS)

I Thread cancellation

37 / 49

Threading Issues

I The fork() and exec() system calls

I Signal handling

I Thread-Local Storage (TLS)

I Thread cancellation

37 / 49

The fork() and exec() System Calls

I Does fork() duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork.

I exec() usually works as normal: replace the entire process, including all
threads.

38 / 49

The fork() and exec() System Calls

I Does fork() duplicate only the calling thread or all threads?
• Some UNIXes have two versions of fork.

I exec() usually works as normal: replace the entire process, including all
threads.

38 / 49

The fork() and exec() System Calls

I Does fork() duplicate only the calling thread or all threads?
• Some UNIXes have two versions of fork.

I exec() usually works as normal: replace the entire process, including all
threads.

38 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.
2. Signal is delivered to a process.
3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.
2. Signal is delivered to a process.
3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.

2. Signal is delivered to a process.
3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.
2. Signal is delivered to a process.

3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.
2. Signal is delivered to a process.
3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (1/2)

I Signals are used in UNIX systems to notify a process that a particular event
has occurred.

I A signal handler is used to process signals:

1. Signal is generated by particular event.
2. Signal is delivered to a process.
3. Signal is handled by the signal handlers, either the default or user-defined.

I Where should a signal be delivered for multi-threaded?

39 / 49

Signal Handling (2/2)

I Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies.
• Deliver the signal to every thread in the process.
• Deliver the signal to certain threads in the process.
• Assign a specific thread to receive all signals for the process.

40 / 49

Signal Handling (2/2)

I Where should a signal be delivered for multi-threaded?
• Deliver the signal to the thread to which the signal applies.

• Deliver the signal to every thread in the process.
• Deliver the signal to certain threads in the process.
• Assign a specific thread to receive all signals for the process.

40 / 49

Signal Handling (2/2)

I Where should a signal be delivered for multi-threaded?
• Deliver the signal to the thread to which the signal applies.
• Deliver the signal to every thread in the process.

• Deliver the signal to certain threads in the process.
• Assign a specific thread to receive all signals for the process.

40 / 49

Signal Handling (2/2)

I Where should a signal be delivered for multi-threaded?
• Deliver the signal to the thread to which the signal applies.
• Deliver the signal to every thread in the process.
• Deliver the signal to certain threads in the process.

• Assign a specific thread to receive all signals for the process.

40 / 49

Signal Handling (2/2)

I Where should a signal be delivered for multi-threaded?
• Deliver the signal to the thread to which the signal applies.
• Deliver the signal to every thread in the process.
• Deliver the signal to certain threads in the process.
• Assign a specific thread to receive all signals for the process.

40 / 49

Thread-Local Storage (TLS)

I TLS allows each thread to have its own copy of data.

I Useful when you do not have control over the thread creation process (i.e.,
thread pool)

I Different from local variables:

• Local variables visible only during single function invocation.
• TLS visible across function invocations.

41 / 49

Thread-Local Storage (TLS)

I TLS allows each thread to have its own copy of data.

I Useful when you do not have control over the thread creation process (i.e.,
thread pool)

I Different from local variables:

• Local variables visible only during single function invocation.
• TLS visible across function invocations.

41 / 49

Thread-Local Storage (TLS)

I TLS allows each thread to have its own copy of data.

I Useful when you do not have control over the thread creation process (i.e.,
thread pool)

I Different from local variables:

• Local variables visible only during single function invocation.
• TLS visible across function invocations.

41 / 49

Thread-Local Storage (TLS)

I TLS allows each thread to have its own copy of data.

I Useful when you do not have control over the thread creation process (i.e.,
thread pool)

I Different from local variables:
• Local variables visible only during single function invocation.

• TLS visible across function invocations.

41 / 49

Thread-Local Storage (TLS)

I TLS allows each thread to have its own copy of data.

I Useful when you do not have control over the thread creation process (i.e.,
thread pool)

I Different from local variables:
• Local variables visible only during single function invocation.
• TLS visible across function invocations.

41 / 49

Thread Cancellation (1/4)

I Terminating a thread before it has finished.

I Thread to be canceled is target thread.

I Two general approaches:

• Asynchronous cancellation terminates the target thread immediately.
• Deferred cancellation allows the target thread to periodically check if it should

be cancelled.

42 / 49

Thread Cancellation (1/4)

I Terminating a thread before it has finished.

I Thread to be canceled is target thread.

I Two general approaches:

• Asynchronous cancellation terminates the target thread immediately.
• Deferred cancellation allows the target thread to periodically check if it should

be cancelled.

42 / 49

Thread Cancellation (1/4)

I Terminating a thread before it has finished.

I Thread to be canceled is target thread.

I Two general approaches:

• Asynchronous cancellation terminates the target thread immediately.
• Deferred cancellation allows the target thread to periodically check if it should

be cancelled.

42 / 49

Thread Cancellation (1/4)

I Terminating a thread before it has finished.

I Thread to be canceled is target thread.

I Two general approaches:
• Asynchronous cancellation terminates the target thread immediately.

• Deferred cancellation allows the target thread to periodically check if it should
be cancelled.

42 / 49

Thread Cancellation (1/4)

I Terminating a thread before it has finished.

I Thread to be canceled is target thread.

I Two general approaches:
• Asynchronous cancellation terminates the target thread immediately.
• Deferred cancellation allows the target thread to periodically check if it should

be cancelled.

42 / 49

Thread Cancellation (2/4)

int counter = 0;

pthread_t tmp_thread;

void* thread_func1(void* args) {

while (1) {

printf("thread number one\n");

sleep(1);

counter++;

if (counter == 2) {

pthread_cancel(tmp_thread);

pthread_exit(NULL);

}

}

}

43 / 49

Thread Cancellation (3/4)

void* thread_func2(void* args) {

tmp_thread = pthread_self();

while (1) {

printf("thread number two\n");

sleep(1); // sleep 1 second

}

}

44 / 49

Thread Cancellation (4/4)

int main() {

pthread_t thread1, thread2;

pthread_create(&thread1, NULL, thread_func1, NULL);

pthread_create(&thread2, NULL, thread_func2, NULL);

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

}

45 / 49

Pthread Hands-On 3

struct thread_args {

int a;

double b;

};

struct thread_result {

long x;

double y;

};

void *thread_func(void *args_void) {

struct thread_args *args = args_void;

struct thread_result *res = malloc(sizeof *res);

res->x = args->a * 2;

res->y = args->b * 2;

return res;

}

int main() {

pthread_t thread;

struct thread_args in = { .a = 10, .b = 3.14 };

void *out_void;

struct thread_result *out;

<YOUR CODE>

}

46 / 49

Summary

47 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Summary

I Single-thread vs. Multi-thread

I Concurrency vs. parallelism

I Multi-threading models: many-to-one, one-to-one, many-to-many

I Multi-thread libraries: pthread

I Implicit threading

I Threading issues

48 / 49

Questions?

Acknowledgements
Some slides were derived from Avi Silberschatz slides.

49 / 49

