
Processes - Part I

Amir H. Payberah
payberah@kth.se

2022

What Is A Process?

1 / 57

Process
An instance of a program running.

https://tinyurl.com/53pecc99

2 / 57

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

3 / 57

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

3 / 57

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

3 / 57

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

3 / 57

Parts of a Process (1/2)

I A process is more than the program code.

I Multiple parts of a process:

• Text section: the executable code

• Data section: global variables

• Heap section: memory that is dynamically allocated during
program run time

• Stack section: temporary data storage when invoking functions
(e.g., function parameters, return addresses, and local variables)

4 / 57

Parts of a Process (1/2)

I A process is more than the program code.

I Multiple parts of a process:

• Text section: the executable code

• Data section: global variables

• Heap section: memory that is dynamically allocated during
program run time

• Stack section: temporary data storage when invoking functions
(e.g., function parameters, return addresses, and local variables)

4 / 57

Parts of a Process (1/2)

I A process is more than the program code.

I Multiple parts of a process:

• Text section: the executable code

• Data section: global variables

• Heap section: memory that is dynamically allocated during
program run time

• Stack section: temporary data storage when invoking functions
(e.g., function parameters, return addresses, and local variables)

4 / 57

Parts of a Process (1/2)

I A process is more than the program code.

I Multiple parts of a process:

• Text section: the executable code

• Data section: global variables

• Heap section: memory that is dynamically allocated during
program run time

• Stack section: temporary data storage when invoking functions
(e.g., function parameters, return addresses, and local variables)

4 / 57

Parts of a Process (1/2)

I A process is more than the program code.

I Multiple parts of a process:

• Text section: the executable code

• Data section: global variables

• Heap section: memory that is dynamically allocated during
program run time

• Stack section: temporary data storage when invoking functions
(e.g., function parameters, return addresses, and local variables)

4 / 57

Parts of a Process (2/2)

5 / 57

Process Control Block (PCB)

I The information of each process.

6 / 57

Process Data Structure in Linux Kernel

I Represented by task struct in the Linux kernel.
• At <include/linux/sched.h>

I All active processes are represented using a doubly linked list of
task struct.

7 / 57

Process Data Structure in Linux Kernel

I Represented by task struct in the Linux kernel.
• At <include/linux/sched.h>

I All active processes are represented using a doubly linked list of
task struct.

7 / 57

Process ID

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The getpid() system call returns the PID of the invoking process.

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

8 / 57

Process ID

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The getpid() system call returns the PID of the invoking process.

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

8 / 57

Process ID

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The getpid() system call returns the PID of the invoking process.

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

8 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

9 / 57

Process Scheduling

10 / 57

Process Scheduling

I Process scheduler selects among available processes for next execution
on CPU core.

I Goal: Maximize CPU use, quickly switch processes onto CPU core

11 / 57

Process Scheduling

I Process scheduler selects among available processes for next execution
on CPU core.

I Goal: Maximize CPU use, quickly switch processes onto CPU core

11 / 57

Scheduling Queues

I Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

I Wait queues: set of processes waiting for an event (e.g., I/O device).

12 / 57

Scheduling Queues

I Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

I Wait queues: set of processes waiting for an event (e.g., I/O device).

12 / 57

Queuing Diagram

13 / 57

Context Switching

I When CPU switches to another process:

• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

14 / 57

Context Switching

I When CPU switches to another process:
• The state of the old process is saved by the system.

• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

14 / 57

Context Switching

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.

• Called context switching.

I Context of a process represented in the PCB.

14 / 57

Context Switching

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

14 / 57

Context Switching

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

14 / 57

Operations on Processes

15 / 57

Operations on Processes

I OS must provide mechanisms for:
• Process creation
• Process termination

16 / 57

Process Creation (1/5)

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

17 / 57

Process Creation (1/5)

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

17 / 57

Process Creation (1/5)

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

17 / 57

Process Creation (2/5)

I fork() creates a new process.

I The new process (child) running the same image as the current one
(parent).

I fork() is called once, but it returns twice.

• The PID of the new child → to the parent.
• 0 → to the child.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

18 / 57

Process Creation (2/5)

I fork() creates a new process.

I The new process (child) running the same image as the current one
(parent).

I fork() is called once, but it returns twice.

• The PID of the new child → to the parent.
• 0 → to the child.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

18 / 57

Process Creation (2/5)

I fork() creates a new process.

I The new process (child) running the same image as the current one
(parent).

I fork() is called once, but it returns twice.

• The PID of the new child → to the parent.
• 0 → to the child.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

18 / 57

Process Creation (2/5)

I fork() creates a new process.

I The new process (child) running the same image as the current one
(parent).

I fork() is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

18 / 57

Process Creation (3/5)

pid_t pid = fork();

if (pid == -1) {

perror("fork");

exit(1);

}

if (pid > 0)

printf("I am the parent of pid = %d!\n", pid);

else

printf("I am the child!\n");

19 / 57

Process Creation (4/5)

I exec() executs a new program.

I Used after fork() to replace the process’ memory space with a new
program.

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

20 / 57

Process Creation (4/5)

I exec() executs a new program.

I Used after fork() to replace the process’ memory space with a new
program.

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

20 / 57

Process Creation (5/5)

pid_t pid = fork();

if (pid == -1) {

perror("fork");

exit(1);

}

if (pid == 0) { // the child

const char *args[] = {"windlass", NULL};

int ret;

ret = execv("/bin/windlass", args);

if (ret == -1) {

perror("execv");

exit(1);

}

}

21 / 57

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it.

I Returns status data from the child to the parent.

I Process resources are deallocated by the OS.

22 / 57

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it.

I Returns status data from the child to the parent.

I Process resources are deallocated by the OS.

22 / 57

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it.

I Returns status data from the child to the parent.

I Process resources are deallocated by the OS.

22 / 57

Process Termination (2/4)

I The exit() then instructs the kernel to terminate the process.

I The status is used to denote the process’s exit status.

#include <stdlib.h>

void exit(int status);

23 / 57

Process Termination (2/4)

I The exit() then instructs the kernel to terminate the process.

I The status is used to denote the process’s exit status.

#include <stdlib.h>

void exit(int status);

23 / 57

Process Termination (3/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

24 / 57

Process Termination (3/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

24 / 57

Process Termination (3/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

24 / 57

Process Termination (3/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

24 / 57

Process Termination (4/4)

int main (void) {

int status;

pid_t pid;

if (fork() == 0) return 1; // the child

pid = wait(&status);

if (pid == -1) perror("wait");

printf("pid = %d\n", pid);

return 0;

}

25 / 57

Inter-Process Communication
(IPC)

26 / 57

Inter-Process Communication (IPC)

I IPC mechanisms allow processes to exchange data.

I Two models of IPC
• Shared memory
• Message passing

Shared-memory Message-passing

27 / 57

Inter-Process Communication (IPC)

I IPC mechanisms allow processes to exchange data.

I Two models of IPC
• Shared memory
• Message passing

Shared-memory Message-passing

27 / 57

Inter-Process Communication (IPC)

I IPC mechanisms allow processes to exchange data.

I Two models of IPC
• Shared memory
• Message passing

Shared-memory Message-passing

27 / 57

Shared Memory

28 / 57

Shared Memory (1/4)

I An area of memory shared among the processes that wish to communicate.

I It is resides in the address space of the process creating the shared-memory
segment.

29 / 57

Shared Memory (1/4)

I An area of memory shared among the processes that wish to communicate.

I It is resides in the address space of the process creating the shared-memory
segment.

29 / 57

Shared Memory (2/4)

I shm open() creates and opens a new shared memory object or opens an
existing object.

I mmap() creates a new mapping in the virtual address space of the calling
process.

I shm unlink() removes a shared memory object.

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

int shm_unlink(const char *name);

30 / 57

Shared Memory (2/4)

I shm open() creates and opens a new shared memory object or opens an
existing object.

I mmap() creates a new mapping in the virtual address space of the calling
process.

I shm unlink() removes a shared memory object.

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

int shm_unlink(const char *name);

30 / 57

Shared Memory (2/4)

I shm open() creates and opens a new shared memory object or opens an
existing object.

I mmap() creates a new mapping in the virtual address space of the calling
process.

I shm unlink() removes a shared memory object.

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

int shm_unlink(const char *name);

30 / 57

Shared Memory (3/4)

I Producer

int SIZE = 4096;

char *my_shm = "/tmp/myshm";

char *write_msg = "hello";

char *addr;

int fd;

// create the shared memory object

fd = shm_open(my_shm, O_CREATE | O_RDWR, 0666);

// configuare the size of the shared memory object

ftruncate(fd, SIZE);

// memory map to the shared memory object

addr = mmap(NULL, SIZE, PROT_WRITE, MAP_SHARED, fd, 0);

// write to the shared object

sprintf(addr, "%s", write_msg);

31 / 57

Shared Memory (4/4)

I Consumer

int SIZE = 4096;

char *my_shm = "/tmp/myshm";

char *addr;

int fd;

// open the shared memory object

fd = shm_open(my_shm, O_RDONLY, 0666);

// memory map to the shared memory object

addr = mmap(NULL, SIZE, PROT_READ, MAP_SHARED, fd, 0);

// read from to the shared object

printf("%s", (char *)addr);

// remove the shared memory object

shm_unlink("my_shm");

32 / 57

Message Passing

33 / 57

Message Passing

I Communicating with each other without resorting to shared variables.

I Useful in a distributed environment: processes on different computers.

34 / 57

Message Passing

I Communicating with each other without resorting to shared variables.

I Useful in a distributed environment: processes on different computers.

34 / 57

Message Passing: Data Message vs. Data Stream

I Stream protocols send a continuous flow of data.
• E.g., phone calls

I Message oriented protocols send data in distinct chunks or groups.
• E.g., SMS

35 / 57

Message Passing: Data Message vs. Data Stream

I Stream protocols send a continuous flow of data.
• E.g., phone calls

I Message oriented protocols send data in distinct chunks or groups.
• E.g., SMS

35 / 57

Message Passing IPC Facilities

I Data stream:
• Pipe
• FIFO (named pipe)

I Data message:
• Message queue

36 / 57

Pipe

37 / 57

Pipe (1/4)

I Pipes are unidirectional, allowing only one-way communication.

I Require parent-child relationship between communicating processes.

ls | wc -l

38 / 57

Pipe (1/4)

I Pipes are unidirectional, allowing only one-way communication.

I Require parent-child relationship between communicating processes.

ls | wc -l

38 / 57

Pipe (1/4)

I Pipes are unidirectional, allowing only one-way communication.

I Require parent-child relationship between communicating processes.

ls | wc -l

38 / 57

Pipe (2/4)

I pipe() creates a new pipe.

I It returns two open file descriptors in fd:

• fd[0] to read from the pipe
• fd[1] to write to the pipe

#include <unistd.h>

int pipe(int fd[2]);

39 / 57

Pipe (2/4)

I pipe() creates a new pipe.

I It returns two open file descriptors in fd:

• fd[0] to read from the pipe
• fd[1] to write to the pipe

#include <unistd.h>

int pipe(int fd[2]);

39 / 57

Pipe (2/4)

I pipe() creates a new pipe.

I It returns two open file descriptors in fd:
• fd[0] to read from the pipe

• fd[1] to write to the pipe

#include <unistd.h>

int pipe(int fd[2]);

39 / 57

Pipe (2/4)

I pipe() creates a new pipe.

I It returns two open file descriptors in fd:
• fd[0] to read from the pipe
• fd[1] to write to the pipe

#include <unistd.h>

int pipe(int fd[2]);

39 / 57

Pipe (3/4)

[Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010]

40 / 57

Pipe (4/4)

int BUFFER_SIZE = 25;

char write_msg[BUFFER_SIZE] = "hello";

char read_msg[BUFFER_SIZE];

int fd[2];

pipe(fd); // Create the pipe

switch (fork()) {

case -1: // fork error

break;

case 0: // Child

close(fd[1]); // Close unused write end

read(fd[0], read_msg, BUFFER_SIZE);

printf("read %s", read_msg);

break;

default: // Parent

close(fd[0]) // Close unused read end

write(fd[1], write_msg, strlen(write_msg) + 1);

break;

}

41 / 57

FIFO

42 / 57

FIFO (1/4)

I FIFO is similar to a pipe, but it has a name within the file system
and is opened in the same way as a regular file.

I Communication is bidirectional.

I No parent-child relationship is necessary.

I Several processes can use a FIFO for communication.

43 / 57

FIFO (1/4)

I FIFO is similar to a pipe, but it has a name within the file system
and is opened in the same way as a regular file.

I Communication is bidirectional.

I No parent-child relationship is necessary.

I Several processes can use a FIFO for communication.

43 / 57

FIFO (1/4)

I FIFO is similar to a pipe, but it has a name within the file system
and is opened in the same way as a regular file.

I Communication is bidirectional.

I No parent-child relationship is necessary.

I Several processes can use a FIFO for communication.

43 / 57

FIFO (1/4)

I FIFO is similar to a pipe, but it has a name within the file system
and is opened in the same way as a regular file.

I Communication is bidirectional.

I No parent-child relationship is necessary.

I Several processes can use a FIFO for communication.

43 / 57

FIFO (2/4)

I The mkfifo() function creates a new FIFO.

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

44 / 57

FIFO (3/4)

I Producer

char *my_fifo = "/tmp/myfifo";

char *write_msg = "hello";

int fd;

// Create the FIFO (named pipe)

mkfifo(my_fifo, 0666);

// Write "hello" to the FIFO

fd = open(my_fifo, O_WRONLY);

write(fd, write_msg, strlen(write_msg));

close(fd);

// Remove the FIFO

unlink(my_fifo);

45 / 57

FIFO (4/4)

I Consumer

int MAX_SIZE = 100;

char *my_fifo = "/tmp/myfifo";

char buf[MAX_SIZE];

int fd;

// Open the FIFO

fd = open(my_fifo, O_RDONLY);

// Read the message from the FIFO

read(fd, buf, MAX_SIZE);

printf("Received: %s\n", buf);

// Close the FIFO

close(fd);

46 / 57

Message Queue

47 / 57

Message Queue (1/6)

I Message queues allows processes to exchange data in the form of
messages.

I In message queue the consumer receives whole messages, as written
by the producer.

• It is not possible to read part of a message.

48 / 57

Message Queue (1/6)

I Message queues allows processes to exchange data in the form of
messages.

I In message queue the consumer receives whole messages, as written
by the producer.

• It is not possible to read part of a message.

48 / 57

Message Queue (1/6)

I Message queues allows processes to exchange data in the form of
messages.

I In message queue the consumer receives whole messages, as written
by the producer.

• It is not possible to read part of a message.

48 / 57

Message Queue (2/6)

I mq open() creates a new message queue or opens an existing queue.

I mq close() closes the message queue descriptor mqdes.

I mq unlink() removes the message queue identified by name.

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

49 / 57

Message Queue (2/6)

I mq open() creates a new message queue or opens an existing queue.

I mq close() closes the message queue descriptor mqdes.

I mq unlink() removes the message queue identified by name.

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

49 / 57

Message Queue (2/6)

I mq open() creates a new message queue or opens an existing queue.

I mq close() closes the message queue descriptor mqdes.

I mq unlink() removes the message queue identified by name.

#include <fcntl.h>

#include <sys/stat.h>

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

int mq_close(mqd_t mqdes);

int mq_unlink(const char *name);

49 / 57

Message Queue (3/6)

I mq send() adds the message msg ptr to the message queue.

I mq receive() removes the oldest message from the message queue.

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len, unsigned int msg_prio);

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len, unsigned int *msg_prio);

50 / 57

Message Queue (3/6)

I mq send() adds the message msg ptr to the message queue.

I mq receive() removes the oldest message from the message queue.

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len, unsigned int msg_prio);

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len, unsigned int *msg_prio);

50 / 57

Message Queue (4/6)

I Specifies attributes of a message queue.

struct mq_attr {

long mq_flags; // Message queue description flags

long mq_maxmsg; // Maximum number of messages on queue

long mq_msgsize; // Maximum message size (in bytes)

long mq_curmsgs; // Number of messages currently in queue

};

51 / 57

Message Queue (5/6)

I Producer

char *my_mq = "/mymq";

char *write_msg = "hello";

mqd_t mqd;

// Open an existing message queue

mqd = mq_open(my_mq, O_WRONLY);

// Write "hello" to the message queue

mq_send(mqd, write_msg, strlen(write_msg), 0);

// Close the message queue

mq_close(mqd);

52 / 57

Message Queue (6/6)

I Consumer

int MAX_SIZE = 100;

int MAX_NUM_MSG = 10;

char *my_mq = "/mymq";

char buf[MAX_SIZE];

mqd_t mqd;

struct mq_attr attr;

// Form the queue attributes

attr.mq_maxmsg = MAX_NUM_MSG;

attr.mq_msgsize = MAX_SIZE;

// Create message queue

mqd = mq_open(my_mq, O_RDONLY | O_CREAT, MQ_MODE, &attr);

// Read the message from the message queue

mq_receive(mqd, buf, MAX_NUM_MSG, NULL);

printf("Message: %s\n", buf);

// Close the message queue

mq_close(mqd);

53 / 57

Summary

54 / 57

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

55 / 57

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

55 / 57

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

55 / 57

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

55 / 57

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

55 / 57

Summary

I Inter-Process Communication: shared memory vs. message passing

I Message passing: data messages vs. stream

I Data stream: pipe, FIFO

I Data message: message queue

56 / 57

Summary

I Inter-Process Communication: shared memory vs. message passing

I Message passing: data messages vs. stream

I Data stream: pipe, FIFO

I Data message: message queue

56 / 57

Summary

I Inter-Process Communication: shared memory vs. message passing

I Message passing: data messages vs. stream

I Data stream: pipe, FIFO

I Data message: message queue

56 / 57

Summary

I Inter-Process Communication: shared memory vs. message passing

I Message passing: data messages vs. stream

I Data stream: pipe, FIFO

I Data message: message queue

56 / 57

Questions?

57 / 57

