
An Introduction to Operating Systems

Amir H. Payberah
payberah@kth.se

2022

Course Information

1 / 78

Course Objective

I The purpose of this course is to teach the design of operating systems.

I The course has five modules:
• Module 1: Process management
• Module 2: Process synchronization
• Module 3: Memory management
• Module 4: Storage management
• Module 5: File systems

2 / 78

Course Objective

I The purpose of this course is to teach the design of operating systems.

I The course has five modules:
• Module 1: Process management
• Module 2: Process synchronization
• Module 3: Memory management
• Module 4: Storage management
• Module 5: File systems

2 / 78

Intended Learning Outcomes (ILOs)

I ILO1: Understand the main OS modules, i.e., managing process, memory, and stor-
age.

I ILO2: Apply the grabbed knowledge to implement the given tasks in different OS
modules.

I ILO3: Analyze the technical merits of a specific OS module.

3 / 78

Intended Learning Outcomes (ILOs)

I ILO1: Understand the main OS modules, i.e., managing process, memory, and stor-
age.

I ILO2: Apply the grabbed knowledge to implement the given tasks in different OS
modules.

I ILO3: Analyze the technical merits of a specific OS module.

3 / 78

Intended Learning Outcomes (ILOs)

I ILO1: Understand the main OS modules, i.e., managing process, memory, and stor-
age.

I ILO2: Apply the grabbed knowledge to implement the given tasks in different OS
modules.

I ILO3: Analyze the technical merits of a specific OS module.

3 / 78

4 / 78

The Course Assessment

I Task1: the review questions.

I Task2: the lecture assignments.

I Task3: the lab assignments.

I Task4: the essay and the presentation.

I Task5: the final exam.

5 / 78

The Course Assessment

I Task1: the review questions.

I Task2: the lecture assignments.

I Task3: the lab assignments.

I Task4: the essay and the presentation.

I Task5: the final exam.

5 / 78

The Course Assessment

I Task1: the review questions.

I Task2: the lecture assignments.

I Task3: the lab assignments.

I Task4: the essay and the presentation.

I Task5: the final exam.

5 / 78

The Course Assessment

I Task1: the review questions.

I Task2: the lecture assignments.

I Task3: the lab assignments.

I Task4: the essay and the presentation.

I Task5: the final exam.

5 / 78

The Course Assessment

I Task1: the review questions.

I Task2: the lecture assignments.

I Task3: the lab assignments.

I Task4: the essay and the presentation.

I Task5: the final exam.

5 / 78

How Each ILO is Assessed?

Task1 Task2 Task3 Task4 Task5
ILO1 x x x

ILO2 x x

ILO3 x

6 / 78

Task1: The Review Questions

I One set of review questions per module.

I The review questions are graded P/F.

I They should be done individually.

7 / 78

Task2: The Lecture Assignments

I One lecture assignment per lecture.

I No deadline.

8 / 78

Task3: The Lab Assignments

I One lab assignment per module.

I The review questions are graded P/F.

I They should be done in group.

9 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:

• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:

• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)

• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)
• P: Presentation (weight 20%)

• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)

• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task4: The Essay and The Presentation

I One module for each group: writing an essay and presenting it to their opponents
(another group).

I Grading of this task has the following parts:
• E : Essay (weight 50%)
• P: Presentation (weight 20%)
• Q: Reviewing another essay and asking questions (weight 20%)
• A: Answering questions (weight 10%)

I Each part is graded A-F.

I The final grade is computed as 0.5× E + 0.2× P + 0.2× Q + 0.1× A.

10 / 78

Task5: The Final Exam

I The final exam covers all the modules presented during the course

I It is graded A-F.

11 / 78

The Final Grade

I To pass the course: you must pass Task 1 and Task 3 and get at least E in Task 4
and Task 5.

I The final grade of the course is computed as 0.5× Task4 + 0.5× Task5.

12 / 78

How to Submit the Assignments?

I Through Canvas.

I You will work individually on Task 1 and Task 5.

I You will work in groups of three or four on Task 3 and Task 4.

13 / 78

Course Textbooks

I Operating System Concepts, 10th Edition
Avil Silberschatz et al., Wiley, 2018

I Linux System Programming, 2nd Edition
Robert Love, O’Relly Media, 2013

I The Linux Programming Interface
Michael Kerrisk, No Starch Press, 2010

14 / 78

The Course Web Page

https://kth-os.github.io

15 / 78

https://kth-os.github.io

The Discussion Page

https://tinyurl.com/35avmfea

16 / 78

https://tinyurl.com/35avmfea

What is an Operating System?

17 / 78

What is an Operating System?

I A program that acts as an intermediary between a user of a computer
and the computer hardware.

18 / 78

What is an Operating System?

I A program that acts as an intermediary between a user of a computer
and the computer hardware.

18 / 78

Operating System Goals

I Execute user programs and make solving user problems easier.

I Make the computer system convenient to use.

I Use the computer hardware in an efficient manner.

19 / 78

Operating System Goals

I Execute user programs and make solving user problems easier.

I Make the computer system convenient to use.

I Use the computer hardware in an efficient manner.

19 / 78

Operating System Goals

I Execute user programs and make solving user problems easier.

I Make the computer system convenient to use.

I Use the computer hardware in an efficient manner.

19 / 78

What Operating Systems Do?

I OS is a resource allocator
• Manages all resources.
• Decides between conflicting requests for efficient and fair resource use.

I OS is a control program
• Controls execution of programs to prevent errors and improper use of the

computer.

20 / 78

What Operating Systems Do?

I OS is a resource allocator
• Manages all resources.
• Decides between conflicting requests for efficient and fair resource use.

I OS is a control program
• Controls execution of programs to prevent errors and improper use of the

computer.

20 / 78

Operating Systems Definition

I The operating system is the one program running at all times on the
computer, usually called the kernel.

I Everything else is either a system program or an application program.

21 / 78

Operating Systems Definition

I The operating system is the one program running at all times on the
computer, usually called the kernel.

I Everything else is either a system program or an application program.

21 / 78

A Brief History of
Operating Systems

22 / 78

First Generation: 1945-1955 (1/2)

I No operating system

I Human was the operator and programmer.

I Computers were programmed by physically re-wiring them.

I Programs written in machine or assembly language.

[http://ysfine.com/wigner/neumann.html]

23 / 78

First Generation: 1945-1955 (1/2)

I No operating system

I Human was the operator and programmer.

I Computers were programmed by physically re-wiring them.

I Programs written in machine or assembly language.

[http://ysfine.com/wigner/neumann.html]

23 / 78

First Generation: 1945-1955 (1/2)

I No operating system

I Human was the operator and programmer.

I Computers were programmed by physically re-wiring them.

I Programs written in machine or assembly language.

[http://ysfine.com/wigner/neumann.html]

23 / 78

First Generation: 1945-1955 (1/2)

I No operating system

I Human was the operator and programmer.

I Computers were programmed by physically re-wiring them.

I Programs written in machine or assembly language.

[http://ysfine.com/wigner/neumann.html]

23 / 78

First Generation: 1945-1955 (2/2)

I Problems:

• Serial processing: users had access to the computer one by one in series.

• Users had to write again and again the same routines.

24 / 78

Second Generation: 1955-1965 (1/5)

I Mainframes

IBM 7094 at Columbia University
[http://www.columbia.edu/cu/computinghistory/1965.html]

25 / 78

Second Generation: 1955-1965 (2/5)

I Separation between operators and programmers.
• The programmer: prepares her/his job off-line.
• The operator: runs the job and delivers a printed output.

I Job
• A program or set of programs.
• A programmer would punch it on cards.
• Programs are in FORTRAN or in assembly language.

26 / 78

Second Generation: 1955-1965 (2/5)

I Separation between operators and programmers.
• The programmer: prepares her/his job off-line.
• The operator: runs the job and delivers a printed output.

I Job
• A program or set of programs.
• A programmer would punch it on cards.
• Programs are in FORTRAN or in assembly language.

26 / 78

Second Generation: 1955-1965 (3/5)

I Batch the jobs together.

I The operator pre-reads jobs onto a magnetic tape.

I The operator loads a special program (monitor) that reads the jobs from
the tapes and run them sequentially.

I The monitor program writes the output of each job on a second magnetic
tape.

I The operator brings the full output tape for offline printing.

[A.S. Tanenbaum et al., Operating Systems Design and Implementation, 2006]

27 / 78

Second Generation: 1955-1965 (3/5)

I Batch the jobs together.

I The operator pre-reads jobs onto a magnetic tape.

I The operator loads a special program (monitor) that reads the jobs from
the tapes and run them sequentially.

I The monitor program writes the output of each job on a second magnetic
tape.

I The operator brings the full output tape for offline printing.

[A.S. Tanenbaum et al., Operating Systems Design and Implementation, 2006]

27 / 78

Second Generation: 1955-1965 (3/5)

I Batch the jobs together.

I The operator pre-reads jobs onto a magnetic tape.

I The operator loads a special program (monitor) that reads the jobs from
the tapes and run them sequentially.

I The monitor program writes the output of each job on a second magnetic
tape.

I The operator brings the full output tape for offline printing.

[A.S. Tanenbaum et al., Operating Systems Design and Implementation, 2006]

27 / 78

Second Generation: 1955-1965 (3/5)

I Batch the jobs together.

I The operator pre-reads jobs onto a magnetic tape.

I The operator loads a special program (monitor) that reads the jobs from
the tapes and run them sequentially.

I The monitor program writes the output of each job on a second magnetic
tape.

I The operator brings the full output tape for offline printing.

[A.S. Tanenbaum et al., Operating Systems Design and Implementation, 2006]

27 / 78

Second Generation: 1955-1965 (3/5)

I Batch the jobs together.

I The operator pre-reads jobs onto a magnetic tape.

I The operator loads a special program (monitor) that reads the jobs from
the tapes and run them sequentially.

I The monitor program writes the output of each job on a second magnetic
tape.

I The operator brings the full output tape for offline printing.

[A.S. Tanenbaum et al., Operating Systems Design and Implementation, 2006]

27 / 78

Second Generation: 1955-1965 (4/5)

I Problems:

• A lot of CPU time is still wasted waiting for I/O instructions to complete.

• I/O devices much slower than processor (especially tapes!)

[W. Stallings, Operating Systems: Internals and Design Principles, 2011]

28 / 78

Second Generation: 1955-1965 (5/5)

I More important problems:

• Operating mainframes was viewed as a low-level and low-value work.

• Racist and sexist job: operators were often women.

[https://www.nytimes.com/2019/02/13/magazine/women-coding-computer-programming.html]

29 / 78

Second Generation: 1955-1965 (5/5)

I More important problems:

• Operating mainframes was viewed as a low-level and low-value work.

• Racist and sexist job: operators were often women.

[https://www.nytimes.com/2019/02/13/magazine/women-coding-computer-programming.html]

29 / 78

Third Generation: 1965-1980 (1/3)

I Multiprogrammed batch systems.

I Jobs are kept in main memory at the same time and the CPU is multi-
plexed among them or multiprogrammed.

[W. Stallings, Operating Systems: Internals and Design Principles, 2011]

30 / 78

Third Generation: 1965-1980 (1/3)

I Multiprogrammed batch systems.

I Jobs are kept in main memory at the same time and the CPU is multi-
plexed among them or multiprogrammed.

[W. Stallings, Operating Systems: Internals and Design Principles, 2011]

30 / 78

Third Generation: 1965-1980 (2/3)

I Tasks kept running until they performed an operation that required wait-
ing for an external event such as I/O.

I But, in a multiple-user system, users want to see their program running
as if it was the only program in the computer.

I Solution? time-sharing or preemptive multitasking systems.

31 / 78

Third Generation: 1965-1980 (2/3)

I Tasks kept running until they performed an operation that required wait-
ing for an external event such as I/O.

I But, in a multiple-user system, users want to see their program running
as if it was the only program in the computer.

I Solution? time-sharing or preemptive multitasking systems.

31 / 78

Third Generation: 1965-1980 (2/3)

I Tasks kept running until they performed an operation that required wait-
ing for an external event such as I/O.

I But, in a multiple-user system, users want to see their program running
as if it was the only program in the computer.

I Solution? time-sharing or preemptive multitasking systems.

31 / 78

Third Generation: 1965-1980 (3/3)

I Time-sharing
• Time sharing is a logical extension of multiprogramming for handling

multiple interactive jobs among multiple users.
• Hardware timer interrupt: switching jobs.

I Birth of UNIX!

32 / 78

Third Generation: 1965-1980 (3/3)

I Time-sharing
• Time sharing is a logical extension of multiprogramming for handling

multiple interactive jobs among multiple users.
• Hardware timer interrupt: switching jobs.

I Birth of UNIX!

32 / 78

Fourth Generation: 1980-Present (1/3)

I Personal Computers (PCs)

I Transition from human operators to software (Operating Systems)

[https://metagamer.nl/tips/is-ips-monitor-goed-voor-gaming]

33 / 78

Fourth Generation: 1980-Present (2/3)

I From multiple users back to a single user.

I Multitasking a central feature of modern PC operating systems.

I PC systems emphasize user convenience.

34 / 78

Fourth Generation: 1980-Present (3/3)

I GNU (GNU’s Not Unix!): 1983

I Mac OS: 1984

I Microsoft Windows: 1985

I Linux: 1991

35 / 78

From Mainframe to PC

I Solves many techincal problems, but ...

I Hollywood reinforced stereotypes of PCs as a boys’ toy (War Games).

I The result: parents were twice as likely to buy computers for their boys
than their girls.

I University CS departments were often elitist, sexist, racist, ableist, and
dominated by men.

[https://tv.apple.com/se/movie/wargames/umc.cmc.4n8grrnb4vq7tgygwcd1cxzcq]

36 / 78

From Mainframe to PC

I Solves many techincal problems, but ...

I Hollywood reinforced stereotypes of PCs as a boys’ toy (War Games).

I The result: parents were twice as likely to buy computers for their boys
than their girls.

I University CS departments were often elitist, sexist, racist, ableist, and
dominated by men.

[https://tv.apple.com/se/movie/wargames/umc.cmc.4n8grrnb4vq7tgygwcd1cxzcq]

36 / 78

From Mainframe to PC

I Solves many techincal problems, but ...

I Hollywood reinforced stereotypes of PCs as a boys’ toy (War Games).

I The result: parents were twice as likely to buy computers for their boys
than their girls.

I University CS departments were often elitist, sexist, racist, ableist, and
dominated by men.

[https://tv.apple.com/se/movie/wargames/umc.cmc.4n8grrnb4vq7tgygwcd1cxzcq]

36 / 78

From Mainframe to PC

I Solves many techincal problems, but ...

I Hollywood reinforced stereotypes of PCs as a boys’ toy (War Games).

I The result: parents were twice as likely to buy computers for their boys
than their girls.

I University CS departments were often elitist, sexist, racist, ableist, and
dominated by men.

[https://tv.apple.com/se/movie/wargames/umc.cmc.4n8grrnb4vq7tgygwcd1cxzcq]

36 / 78

From Hobby to Marketplace

I Variety of OS, borrowing liberally from each others’ innovations.

I This liberal copying/sharing was also accompanied by fierce, anti-competitive
practices.

I These business trends mainly followed free-market policies (neoliberalism).

[https://criticallyconsciouscomputing.org/operating]

37 / 78

From Hobby to Marketplace

I Variety of OS, borrowing liberally from each others’ innovations.

I This liberal copying/sharing was also accompanied by fierce, anti-competitive
practices.

I These business trends mainly followed free-market policies (neoliberalism).

[https://criticallyconsciouscomputing.org/operating]

37 / 78

From Hobby to Marketplace

I Variety of OS, borrowing liberally from each others’ innovations.

I This liberal copying/sharing was also accompanied by fierce, anti-competitive
practices.

I These business trends mainly followed free-market policies (neoliberalism).

[https://criticallyconsciouscomputing.org/operating]

37 / 78

Free Software Foundation (1/3)

I In 1971 Richard Matthew Stallman (RMS) joined MIT.

I At that time, all the programmers used to share their code freely.

I In 1980, software companies refused to share the code (copyright).

I In 1985, in response, Stallman, founded the Free Software Foundation
(FSF) and published the GNU manifesto.

38 / 78

Free Software Foundation (1/3)

I In 1971 Richard Matthew Stallman (RMS) joined MIT.

I At that time, all the programmers used to share their code freely.

I In 1980, software companies refused to share the code (copyright).

I In 1985, in response, Stallman, founded the Free Software Foundation
(FSF) and published the GNU manifesto.

38 / 78

Free Software Foundation (1/3)

I In 1971 Richard Matthew Stallman (RMS) joined MIT.

I At that time, all the programmers used to share their code freely.

I In 1980, software companies refused to share the code (copyright).

I In 1985, in response, Stallman, founded the Free Software Foundation
(FSF) and published the GNU manifesto.

38 / 78

Free Software Foundation (1/3)

I In 1971 Richard Matthew Stallman (RMS) joined MIT.

I At that time, all the programmers used to share their code freely.

I In 1980, software companies refused to share the code (copyright).

I In 1985, in response, Stallman, founded the Free Software Foundation
(FSF) and published the GNU manifesto.

38 / 78

Free Software Foundation (2/3)

I In 1989, Stallman released the first program independent GNU General
Public Licence (GPL) or copyleft.

I Now the only thing that GNU lacked was a completely free OS kernel:
GNU Hurd kernel

I In 1985, Andy Tanenbaum wrote a Unix like OS from scratch, called
Minix.

[https://commons.wikimedia.org/wiki/File:Andrew S. Tanenbaum.jpg]

39 / 78

Free Software Foundation (2/3)

I In 1989, Stallman released the first program independent GNU General
Public Licence (GPL) or copyleft.

I Now the only thing that GNU lacked was a completely free OS kernel:
GNU Hurd kernel

I In 1985, Andy Tanenbaum wrote a Unix like OS from scratch, called
Minix.

[https://commons.wikimedia.org/wiki/File:Andrew S. Tanenbaum.jpg]

39 / 78

Free Software Foundation (2/3)

I In 1989, Stallman released the first program independent GNU General
Public Licence (GPL) or copyleft.

I Now the only thing that GNU lacked was a completely free OS kernel:
GNU Hurd kernel

I In 1985, Andy Tanenbaum wrote a Unix like OS from scratch, called
Minix.

[https://commons.wikimedia.org/wiki/File:Andrew S. Tanenbaum.jpg]

39 / 78

Free Software Foundation (3/3)

I In 1990, Linus Torvalds wanted to improve Minix.

I But he was prohibited by Tanenbaum to do so.

I So, Linus implemented his own kernel and released it under GPL: Linux
kernel

I Linux, is then, used as the kernel of the GNU in many distributions.

[https://gridinsoft.com/blogs/linus-torvalds-approved-exclusion-of-the-terms-slave-blacklist-and-others-from-the-linux-kernel-code/]

40 / 78

Free Software Foundation (3/3)

I In 1990, Linus Torvalds wanted to improve Minix.

I But he was prohibited by Tanenbaum to do so.

I So, Linus implemented his own kernel and released it under GPL: Linux
kernel

I Linux, is then, used as the kernel of the GNU in many distributions.

[https://gridinsoft.com/blogs/linus-torvalds-approved-exclusion-of-the-terms-slave-blacklist-and-others-from-the-linux-kernel-code/]

40 / 78

Free Software Foundation (3/3)

I In 1990, Linus Torvalds wanted to improve Minix.

I But he was prohibited by Tanenbaum to do so.

I So, Linus implemented his own kernel and released it under GPL: Linux
kernel

I Linux, is then, used as the kernel of the GNU in many distributions.

[https://gridinsoft.com/blogs/linus-torvalds-approved-exclusion-of-the-terms-slave-blacklist-and-others-from-the-linux-kernel-code/]

40 / 78

Free Software Foundation (3/3)

I In 1990, Linus Torvalds wanted to improve Minix.

I But he was prohibited by Tanenbaum to do so.

I So, Linus implemented his own kernel and released it under GPL: Linux
kernel

I Linux, is then, used as the kernel of the GNU in many distributions.

[https://gridinsoft.com/blogs/linus-torvalds-approved-exclusion-of-the-terms-slave-blacklist-and-others-from-the-linux-kernel-code/]

40 / 78

Computer System Operation

41 / 78

Computer-System Operation

I One or more CPUs, and device controllers connect through common bus
providing access to shared memory.

I The CPU and the device controllers can execute in parallel, competing
for memory cycles.

I Device controllers inform CPU that it is finished with the operation by
causing an interrupt.

42 / 78

Computer-System Operation

I One or more CPUs, and device controllers connect through common bus
providing access to shared memory.

I The CPU and the device controllers can execute in parallel, competing
for memory cycles.

I Device controllers inform CPU that it is finished with the operation by
causing an interrupt.

42 / 78

Computer-System Operation

I One or more CPUs, and device controllers connect through common bus
providing access to shared memory.

I The CPU and the device controllers can execute in parallel, competing
for memory cycles.

I Device controllers inform CPU that it is finished with the operation by
causing an interrupt.

42 / 78

Interrupt

I Hardware may trigger an interrupt at any time by sending a signal to the
CPU.

I Software may trigger an interrupt by executing a special operation called
a system call.

I When the CPU is interrupted, it stops what it is doing and immedi-
ately transfers execution to an address where the service routine for the
interrupt is located.

I The CPU resumes the interrupted computation, when the interrupt ser-
vice routine completes.

43 / 78

Interrupt

I Hardware may trigger an interrupt at any time by sending a signal to the
CPU.

I Software may trigger an interrupt by executing a special operation called
a system call.

I When the CPU is interrupted, it stops what it is doing and immedi-
ately transfers execution to an address where the service routine for the
interrupt is located.

I The CPU resumes the interrupted computation, when the interrupt ser-
vice routine completes.

43 / 78

Interrupt

I Hardware may trigger an interrupt at any time by sending a signal to the
CPU.

I Software may trigger an interrupt by executing a special operation called
a system call.

I When the CPU is interrupted, it stops what it is doing and immedi-
ately transfers execution to an address where the service routine for the
interrupt is located.

I The CPU resumes the interrupted computation, when the interrupt ser-
vice routine completes.

43 / 78

Interrupt

I Hardware may trigger an interrupt at any time by sending a signal to the
CPU.

I Software may trigger an interrupt by executing a special operation called
a system call.

I When the CPU is interrupted, it stops what it is doing and immedi-
ately transfers execution to an address where the service routine for the
interrupt is located.

I The CPU resumes the interrupted computation, when the interrupt ser-
vice routine completes.

43 / 78

Multiprogramming

I Multiprogramming (batch system): needed for efficiency.

I Organizes jobs (code and data), so CPU always has one to execute.

I A subset of total jobs in system is kept in memory.

I One job selected and run via job scheduling.

I When it has to wait (for I/O for example),
OS switches to another job.

44 / 78

Multiprogramming

I Multiprogramming (batch system): needed for efficiency.

I Organizes jobs (code and data), so CPU always has one to execute.

I A subset of total jobs in system is kept in memory.

I One job selected and run via job scheduling.

I When it has to wait (for I/O for example),
OS switches to another job.

44 / 78

Multiprogramming

I Multiprogramming (batch system): needed for efficiency.

I Organizes jobs (code and data), so CPU always has one to execute.

I A subset of total jobs in system is kept in memory.

I One job selected and run via job scheduling.

I When it has to wait (for I/O for example),
OS switches to another job.

44 / 78

Multiprogramming

I Multiprogramming (batch system): needed for efficiency.

I Organizes jobs (code and data), so CPU always has one to execute.

I A subset of total jobs in system is kept in memory.

I One job selected and run via job scheduling.

I When it has to wait (for I/O for example),
OS switches to another job.

44 / 78

Multiprogramming

I Multiprogramming (batch system): needed for efficiency.

I Organizes jobs (code and data), so CPU always has one to execute.

I A subset of total jobs in system is kept in memory.

I One job selected and run via job scheduling.

I When it has to wait (for I/O for example),
OS switches to another job.

44 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Time-sharing

I Time-sharing (multitasking): CPU switches jobs so frequently that users
can interact with each job while it is running, creating interactive com-
puting.

• Providing each user with a small portion of a time-shared computer.

• Each user has at least one separate program in memory, called a process.

• Each process typically executes for only a short time.

• If several jobs ready to run at the same time → CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to run.

45 / 78

Operating System Structure

46 / 78

Dual-Mode Operation (1/2)

I The OS and the users share the hardware and software resources of the
computer system.

I We need to make sure that an error in a user program could cause
problems only for the one program running.

• E.g., stucking in a finite loop

47 / 78

Dual-Mode Operation (1/2)

I The OS and the users share the hardware and software resources of the
computer system.

I We need to make sure that an error in a user program could cause
problems only for the one program running.

• E.g., stucking in a finite loop

47 / 78

Dual-Mode Operation (2/2)

I Dual-mode operation allows OS to protect itself and other system com-
ponents.

• User mode and kernel mode.
• System call changes mode to kernel, return from call resets it to user.

[Transition from user to kernel mode]

48 / 78

Dual-Mode Operation (2/2)

I Dual-mode operation allows OS to protect itself and other system com-
ponents.

• User mode and kernel mode.

• System call changes mode to kernel, return from call resets it to user.

[Transition from user to kernel mode]

48 / 78

Dual-Mode Operation (2/2)

I Dual-mode operation allows OS to protect itself and other system com-
ponents.

• User mode and kernel mode.
• System call changes mode to kernel, return from call resets it to user.

[Transition from user to kernel mode]

48 / 78

Operating System Structure

49 / 78

User Space

50 / 78

Programs

I Kernel: the program running at all times on a computer.

I Everything else is either:
• a system program
• an application program

51 / 78

Programs

I Kernel: the program running at all times on a computer.

I Everything else is either:
• a system program
• an application program

51 / 78

System Programs

I An environment for program development and execution.

I System programs include:

• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:

• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files

• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory

• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers

• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders

• Communications, e.g., services to make connections among processes,
users, and hardware

• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware

• Background services, e.g., services and daemons

52 / 78

System Programs

I An environment for program development and execution.

I System programs include:
• File manipulation, e.g., copy, delete, rename, and edit files
• Status information, e.g., date, time, and available memory
• Programming language support, e.g., assemblers, and debuggers
• Program loading and execution, e.g., loaders
• Communications, e.g., services to make connections among processes,

users, and hardware
• Background services, e.g., services and daemons

52 / 78

Application Programs

I Don’t pertain to system.

I Run by users.

I Not typically considered part of OS.

I Launched by command line, mouse click, finger poke.

I Web browsers, word processors, database systems, compilers, games, ...

53 / 78

Kernel Space

54 / 78

Operating System Structure

55 / 78

Splitting the Kernel

I The kernel’s role can be split into the following parts
• Process management
• Memory management
• Storage management and File system
• Device control and I/O subsystem
• Protection and security

56 / 78

Process Management (1/2)

I A process is a program in execution.
• Program is a passive entity, process is an active entity.

I A process needs resources to accomplish its task.
• CPU, memory, I/O, files, initialization data, ...

I Process termination requires reclaim of any reusable resources.

57 / 78

Process Management (1/2)

I A process is a program in execution.
• Program is a passive entity, process is an active entity.

I A process needs resources to accomplish its task.
• CPU, memory, I/O, files, initialization data, ...

I Process termination requires reclaim of any reusable resources.

57 / 78

Process Management (1/2)

I A process is a program in execution.
• Program is a passive entity, process is an active entity.

I A process needs resources to accomplish its task.
• CPU, memory, I/O, files, initialization data, ...

I Process termination requires reclaim of any reusable resources.

57 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Process Management (2/2)

I Process management activities:

• Scheduling processes and threads on the CPUs.

• Creating and deleting both user and system processes.

• Suspending and resuming processes.

• Providing mechanisms for process synchronization.

• Providing mechanisms for process communication.

58 / 78

Memory Management (1/2)

I To execute a program all (or part) of the instructions must be in memory.

I All (or part) of the data that is needed by the program must be in
memory.

I Memory management determines what is in memory and when.
• Optimizing CPU utilization and computer response to users.

59 / 78

Memory Management (1/2)

I To execute a program all (or part) of the instructions must be in memory.

I All (or part) of the data that is needed by the program must be in
memory.

I Memory management determines what is in memory and when.
• Optimizing CPU utilization and computer response to users.

59 / 78

Memory Management (1/2)

I To execute a program all (or part) of the instructions must be in memory.

I All (or part) of the data that is needed by the program must be in
memory.

I Memory management determines what is in memory and when.
• Optimizing CPU utilization and computer response to users.

59 / 78

Memory Management (2/2)

I Memory management activities:

• Keeping track of which parts of memory are currently being used and by
whom.

• Deciding which processes (or parts of) and data to move into and out of
memory.

• Allocating and deallocating memory space as needed.

60 / 78

Memory Management (2/2)

I Memory management activities:

• Keeping track of which parts of memory are currently being used and by
whom.

• Deciding which processes (or parts of) and data to move into and out of
memory.

• Allocating and deallocating memory space as needed.

60 / 78

Memory Management (2/2)

I Memory management activities:

• Keeping track of which parts of memory are currently being used and by
whom.

• Deciding which processes (or parts of) and data to move into and out of
memory.

• Allocating and deallocating memory space as needed.

60 / 78

Memory Management (2/2)

I Memory management activities:

• Keeping track of which parts of memory are currently being used and by
whom.

• Deciding which processes (or parts of) and data to move into and out of
memory.

• Allocating and deallocating memory space as needed.

60 / 78

Storage Management (1/3)

I Usually disks used to store data that does not fit in main memory or data
that must be kept for a long period of time.

I Disk management activities:
• Free-space management
• Storage allocation
• Disk scheduling

61 / 78

Storage Management (1/3)

I Usually disks used to store data that does not fit in main memory or data
that must be kept for a long period of time.

I Disk management activities:
• Free-space management
• Storage allocation
• Disk scheduling

61 / 78

Storage Management (2/3)

I OS provides uniform and logical view of information storage.

I OS abstracts physical properties to logical storage unit, called file.
• A file is a collection of related information (programs or data).
• Files usually organized into directories.

I OS maps files onto physical media and accesses these files via the storage
devices, e.g., disk drive, tape drive.

62 / 78

Storage Management (2/3)

I OS provides uniform and logical view of information storage.

I OS abstracts physical properties to logical storage unit, called file.
• A file is a collection of related information (programs or data).
• Files usually organized into directories.

I OS maps files onto physical media and accesses these files via the storage
devices, e.g., disk drive, tape drive.

62 / 78

Storage Management (2/3)

I OS provides uniform and logical view of information storage.

I OS abstracts physical properties to logical storage unit, called file.
• A file is a collection of related information (programs or data).
• Files usually organized into directories.

I OS maps files onto physical media and accesses these files via the storage
devices, e.g., disk drive, tape drive.

62 / 78

Storage Management (3/3)

I File management activities:

• Creating and deleting files and directories.

• Primitives to manipulate files and directories.

• Mapping files onto secondary storage.

• Backup files onto stable (non-volatile) storage media.

63 / 78

Storage Management (3/3)

I File management activities:

• Creating and deleting files and directories.

• Primitives to manipulate files and directories.

• Mapping files onto secondary storage.

• Backup files onto stable (non-volatile) storage media.

63 / 78

Storage Management (3/3)

I File management activities:

• Creating and deleting files and directories.

• Primitives to manipulate files and directories.

• Mapping files onto secondary storage.

• Backup files onto stable (non-volatile) storage media.

63 / 78

Storage Management (3/3)

I File management activities:

• Creating and deleting files and directories.

• Primitives to manipulate files and directories.

• Mapping files onto secondary storage.

• Backup files onto stable (non-volatile) storage media.

63 / 78

Storage Management (3/3)

I File management activities:

• Creating and deleting files and directories.

• Primitives to manipulate files and directories.

• Mapping files onto secondary storage.

• Backup files onto stable (non-volatile) storage media.

63 / 78

I/O Subsystem

I One purpose of OS is to hide details of hardware devices from the user.

I The I/O subsystem consists of several components:

• General device-driver interface.
• Drivers for specific hardware devices.
• Memory management of I/O.

64 / 78

I/O Subsystem

I One purpose of OS is to hide details of hardware devices from the user.

I The I/O subsystem consists of several components:

• General device-driver interface.
• Drivers for specific hardware devices.
• Memory management of I/O.

64 / 78

I/O Subsystem

I One purpose of OS is to hide details of hardware devices from the user.

I The I/O subsystem consists of several components:
• General device-driver interface.

• Drivers for specific hardware devices.
• Memory management of I/O.

64 / 78

I/O Subsystem

I One purpose of OS is to hide details of hardware devices from the user.

I The I/O subsystem consists of several components:
• General device-driver interface.
• Drivers for specific hardware devices.

• Memory management of I/O.

64 / 78

I/O Subsystem

I One purpose of OS is to hide details of hardware devices from the user.

I The I/O subsystem consists of several components:
• General device-driver interface.
• Drivers for specific hardware devices.
• Memory management of I/O.

64 / 78

Protection and Security

I Protection: any mechanism for controlling access of processes or users
to resources defined by the OS.

I Security: defense of the system against internal and external attacks.
• E.g., denial-of-service, worms, viruses, identity theft, theft of service, ...

65 / 78

Protection and Security

I Protection: any mechanism for controlling access of processes or users
to resources defined by the OS.

I Security: defense of the system against internal and external attacks.
• E.g., denial-of-service, worms, viruses, identity theft, theft of service, ...

65 / 78

System Calls

66 / 78

Operating System Structure

67 / 78

System Calls

I Programming interface to the services provided by the OS.

I Typically written in a high-level language (C or C++).

I Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use.

68 / 78

System Calls

I Programming interface to the services provided by the OS.

I Typically written in a high-level language (C or C++).

I Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use.

68 / 78

System Calls

I Programming interface to the services provided by the OS.

I Typically written in a high-level language (C or C++).

I Mostly accessed by programs via a high-level Application Programming
Interface (API) rather than direct system call use.

68 / 78

Application Programming Interface (API)

I The API specifies a set of functions that are available to an application
programmer.

• It includes the parameters that are passed to each function and the
return values the programmer can expect.

I Three most common APIs:
• POSIX API for POSIX-based systems (including virtually all versions of

UNIX, Linux, and Mac OS X)
• Windows API for Windows
• Java API for the Java virtual machine (JVM)

69 / 78

Application Programming Interface (API)

I The API specifies a set of functions that are available to an application
programmer.

• It includes the parameters that are passed to each function and the
return values the programmer can expect.

I Three most common APIs:
• POSIX API for POSIX-based systems (including virtually all versions of

UNIX, Linux, and Mac OS X)
• Windows API for Windows
• Java API for the Java virtual machine (JVM)

69 / 78

API and System Calls (1/4)

I Why would an application programmer prefer programming according to
an API rather than invoking actual system calls?

70 / 78

API and System Calls (2/4)

> cp a.txt b.txt

71 / 78

API and System Calls (3/4)

> strace cp a.txt b.txt

execve("/bin/cp", ["cp", "a.txt", "b.txt"], [/* 49 vars */]) = 0

brk(0) = 0x8a2d000

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb76ff000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=108563, ...}) = 0

mmap2(NULL, 108563, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb76e4000

close(3) = 0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/i386-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0@A\0\0004\0\0\0"..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0644, st_size=120748, ...}) = 0

mmap2(NULL, 125852, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb76c5000

mmap2(0xb76e2000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1c) = 0xb76e2000

close(3) = 0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/i386-linux-gnu/librt.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320\30\0\0004\0\0\0"..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0644, st_size=30684, ...}) = 0

mmap2(NULL, 33360, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb76bc000

mmap2(0xb76c3000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x6) = 0xb76c3000

close(3) = 0

...

72 / 78

API and System Calls (4/4)

73 / 78

Types of System Calls (1/2)

I System calls can be grouped roughly into six major categories:

1. Process control

2. File manipulation

3. Device manipulation

4. Information maintenance

5. Communications

6. Protection

74 / 78

Types of System Calls (2/2)

75 / 78

Summary

76 / 78

Summary

I Computer-system organization: CPU, I/O devices, interrupt

I Operating-system structure: user-space, system calls, kernel-space

I Splitting the kernel:

77 / 78

Questions?

78 / 78

