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1 Introduction

This is an experiment where we will implement our own malloc. We will

not implement the world's fastest allocator, but it will work, and we will

hopefully better understand what is required by the underlying memory

manager. Remember that malloc() is a library procedure that is running

in user space; it is, therefore, easy to direct a program to use our allocator

rather than the one provided by the standard library.

2 The interface

If we look at the manual pages of malloc() and free(), we start to under-

stand what the requirements are.

The malloc() function allocates size bytes and returns a pointer

to the allocated memory. The memory is not initialized. If size

is 0, then malloc() returns either NULL, or a unique pointer value

that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr, which

must have been returned by a previous call to malloc(), calloc(),

or realloc(). Otherwise, or if free(ptr) has already been called

before, undefined behavior occurs. If ptr is NULL, no operation is

performed.

Also, look further down on the man page to see what the procedures

should return and why malloc() can fail.

2.1 This is too easy

Ok, how hard can it be, we only need to have in�nite memory, and the

problem is solved - let's do this as our �rst experiment. Create a �le called

mylloc.c and buckle your seat belt. We will make things very easy in the

beginning. Simply ask the operating system for more heap space when we

call mylloc() and ignore anything freed. This solution would not give you

any points in the exam but is a good start for our experiments.
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#include <stdlib.h>

#include <unistd.h>

void *malloc(size_t size) {

if (size == 0)

return NULL;

void *memory = sbrk(size);

if(memory == (void *)-1)

return NULL;

else

return memory;

}

void free(void *memory) {

return;

}

Look up the man-pages for sbrk(). The procedure will fail only if the

operating system fails to increase the heap segment. If this happens it will

return -1, but malloc() should return NULL. Also, note the two versions of

changing the size of the heap segment, sbrk() and brk(). The �rst is just

a convenient way of calling the other.

When we compile the mylloc.c program, we need to tell GCC to compile

the program to an object �le, but we should not link the object �le and try

to turn it into an executable. After all, there is no main() procedure, so it

is not a complete program. We do this using the -c �ag. If we look in the

man page for gcc we �nd this description:

-c Compile or assemble the source files, but do not link. The link-

ing stage simply is not done. The ultimate output is in the form

of an object file for each source file.

So our command looks like this:

$ gcc -c mylloc.c

If everything works, you should have a �le called mylloc.o, which is the

object �le we need.

2.2 The benchmark

To see how well our solution (remember, the proposal is close to a stupid

solution) works, we implement a benchmark that will allocate and free a

sequence of memory blocks. Our �rst benchmark will not be the best, but it

will at least show that the system is working or why it is not working that

well. We use a call to sbrk(0) to get the current top of the heap and then

track this for each round that we execute the inner loop.
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#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#define ROUNDS 10

#define LOOP 100000

int main() {

void *init = sbrk(0);

void *current;

printf("The initial top of the heap is %p.\n", init);

for(int j = 0; j < ROUNDS; j++) {

for(int i= 0; i < LOOP ; i++) {

size_t size = (rand() % 4000) + sizeof(int);

int *memory;

memory = malloc(size);

if (memory == NULL) {

fprintf(stderr, "malloc failed\n");

return(1);

}

/* writing to the memory so we know it exists */

*memory = 123;

free(memory);

}

current = sbrk(0);

int allocated = (int)((current - init) / 1024);

printf("%d\n", j);

printf("The current top of the heap is %p.\n", current);

printf("increased by %d Kbyte\n", allocated);

}

return 0;

}

2.3 Our �rst run

We can now compile our benchmark and provide the object �le so the link-

ing works. Note that we provide the object �le mylloc.o as an argument

to GCC. The linker will �rst use the object �les that we provide, so the

real implementation of malloc() in the standard library is shadowed by our

implementation in mylloc.o.

$ gcc -o bench mylloc.o bench.c

Ok, give the benchmark a try to see if it works. If it does, you should see

how the heap increases as we myllocate more memory. The problem is that

our implementation of free() is simply doing nothing. The blocks that we

have freed could have been reused when we asked for the next block, but we

simply ignored old blocks and asked the kernel for more space.
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For how long can this work? Must we run out of memory sometime?

Increase the number of rounds to 100 and see what happens. My guess

is that the program will not end successfully. It might stop with an exit

message, �malloc failed�, but it could also be that the kernel shoots it down

and the �nal message is simply �killed�. The latter happens when the kernel

starts running out of virtual memory and is looking around for a suitable

process to terminate. This is the called Out Of Memory management or

simply the OOM-Killer process in action.

You might wonder what could cause the kernel to be out of virtual mem-

ory. If we have a virtual address space of 47 bits, there should be plenty of

virtual memory to choose from. Hmm, . . . , comment out the line where we

write 123 to the allocated memory, then increase the number of rounds to a

thousand - what is going on?

2.4 A random sequence of size

Ok, so we know that things work, and we know what we will have to improve

the reuse of freed blocks, but before we change the mylloc procedures, we

need to improve the benchmark program.

The �rst thing we will �x is the random selection of block size. We can

assume that a program will request small blocks far more often than large

blocks, so this is our goal. The use of rand() % 4000 in the code gives

us a uniform distribution from zero to 4000. We would much rather have

an exponentially decreasing distribution between, for example, MIN and

MAX; how can we achieve this? What if the size was calculated like this,

where r is a random value:

size = MAX/er

If er is from 1 to MAX/MIN , then the size will be in the range from

MIN to MAX. To generate er in this range we simply want r to be in the

range 0 to log(MAX/MIN). Let's go; we have to keep track of doubles and

ints, but it is quite simple. Let's implement our own random selection of

block sizes in a �le called rand.c.

4



#include <stdlib.h>

#include <math.h>

#define MAX 4000

#define MIN 8

int request() {

/* k is log(MAX/MIN) */

double k = log(((double)MAX) / MIN);

/* r is [0..k[ */

double r = ((double)(rand() % (int)(k * 10000))) / 10000;

/* size is [0 .. MAX[ */

int size = (int)((double)MAX / exp(r)) ;

return size;

}

Compile the �le as an object �le:

$ gcc -c rand.c

We also need a �le rand.h that has the description of the request pro-

cedure. This will be needed by the programs that use our random model.

int r eque s t ( ) ;

To see the e�ect of this distribution, you can do a quick experiment.

Write a small program, test.c, that takes an integer as an argument and

generates a sequence of requested block sizes. Print them to stdout, so we

can pipe the sequence and sort the output.

#include <stdlib.h>

#include <stdio.h>

#include "rand.h"

int main(int argc, char *argv[]) {

if(argc < 2) {

printf("usage: rand <loop>\n");

exit(1);

}

int loop = atoi(argv[1]);

for(int i= 0; i < loop ; i++) {

int size = request();

printf("%d\n", size);

}

return 0;

}
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When you compile the program you need to include the math library (-

lm) in order for the linker to �nd the de�nitions of log() and exp(). Note

that test.c must be given before the link parameter.

$ gcc -o test rand.o test.c -lm

Now we generate a sequence and sort the output:

$ ./test 100 | sort -n

Looks ok? Now generate a thousand numbers, sort them and save them

to a �le freq.dat.

$ ./test 1000 | sort -n > freq.dat

Now we are ready to use gnuplot to take a look at the generated sequence.

Start gnuplot and just do a quick and dirty plot of the freq.dat.

$ gnuplot

:

:

gnuplot> plot "freq.dat" u 1

You can try the following if you better want to see what is happening:

gnuplot> set logscale y

:

gnuplot> plot "freq.dat" u 1

Ok? Now let's continue the work on the benchmark program. Change the

code in bench.c to use our new request procedure (do not forget to include

the header �le). When compiling the benchmark, you need to include also

the object �le rand.o.

gcc -o bench mylloc.o rand.o bench.c -lm

2.5 A bu�er of blocks

The benchmark program does not mimic how a typical program would use

memory. We simply allocate a memory block and then free the same block

immediately. A typical program would probably allocate some blocks, free
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some, and then allocate some more. We need to adapt our benchmark pro-

gram to produce something closer to regular behavior.

To do this, we introduce a bu�er of allocated blocks. We will randomly

select a position in the bu�er, and if it is empty, we allocate a block. If we

�nd a block at the position, we �rst free this block before allocating a new

block. When we start, the bu�er is all empty, but after a while, it will be

�lled with references to allocated blocks.

The size of the bu�er is the maximum number of blocks in memory.

Since we randomly add or remove blocks, we will, on average, have half of

the entries �lled. The bu�er size is a measurement of how memory hungry

your benchmark will be and how quickly data structures are freed; choose

any number that you think makes sense but realize that it will change the

benchmark's behavior.

#define BUFFER 100

To initialize the bu�er, we include this code at the beginning of the main

procedure:

void *buffer[BUFFER];

for(int i = 0; i < BUFFER; i++)

buffer[i] = NULL;

Now, change the section where new blocks are allocated to something

that looks like this:

int index = rand() % BUFFER;

if (buffer[index] != NULL) {

free(buffer[index]);

buffer[index] = NULL;

} else {

size_t size = (size_t)request();

int *memory;

memory = malloc(size);

if (memory == NULL) {

fprintf(stderr, "memory allocation failed\n");

return(1);

}

buffer[index] = memory;

/* writing to the memory so we know it exists */

*memory = 123;

}

A word of warning; we happily write to the allocated memory hoping

that the integer will �t. We are thus relying on the fact that request() will

always return something greater than sizeof(int). This is true in our case

since we have MIN set to 8, but if you set MIN to 2, things might break.
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So now we should have a nice benchmark program. Try it to see that

it works, and then do the following: re-compile bench.c but now omit to

provide mylloc.o on the command line. The benchmark program will then

use the de�nition of malloc() found in the standard library.

$ gcc -o bench rand.o bench.c -lm

Rerun the benchmark and see if there is any di�erence - we have some

work to do, right?

3 Let's keep it simple

We should not complicate things more than necessary, so let's keep it simple.

We can save all freed blocks in a linked list, and when we are asked for a new

block, we simply search through the list to see if we can �nd a large enough

block. To do this, we must keep track of how big the blocks are, and this

is not something that comes automatically. When the free() procedure is

called, it is given a reference to a block, but there is no information on how

big the block is. To solve this dilemma, we have to cheat a bit.

3.1 You do not owe me your freedom.

Make a copy of mylloc.c and call it mhysa.c. We will now adapt the pro-

cedures to work with a linked list of free blocks. Since we do not want to

expose the internals of our implementation, we will do the trick by allocating

more memory than requested and writing some hidden information at the

beginning of the block. When we hand the block to the user process, we give

it a pointer to the �rst free location.

We create a new data structure chunk and initialize a free list pointer.

The data structure is called malloc_chunk in Linux and holds more infor-

mation than we have, but this is �ne now.

struct chunk {

int size;

struct chunk *next;

};

struct chunk* flist = NULL;

We now have to rewrite free() and malloc() to make use of the free

list. To free a block is quite simple; we assume that the reference we get is a

reference to something that we allocated and therefore know that there will

be a hidden chunk structure just before the given reference.

8



void free(void *memory) {

if (memory != NULL) {

/* we are jumping back one chunk position */

struct chunk *cnk = (struct chunk*)((struct chunk*)memory - 1);

cnk->next = flist;

flist = cnk;

}

return;

}

It is a simple task to let the next pointer of the freed block point to

whatever flist is pointing to and then update flist. You can test to see

that it works, but nothing has changed if we do not make use of the blocks

in the lists.

3.2 Find a free block

The malloc() procedure is slightly more code, but the task is quite simple.

If we are asked for a new block of a given size, we will �rst search the free

list for a suitable block. If one is found, we can reuse the block and will then

un-link it from the free list. If no appropriate block is found, we have to do

as we did before and ask the kernel for some more space.

void *malloc(size_t size) {

if (size == 0)

return NULL;

struct chunk *next = flist;

struct chunk *prev = NULL;

while (next != NULL) {

if (next->size >= size) {

if (prev != NULL) {

prev->next = next->next;

} else {

flist = next->next;

}

return (void*)(next + 1);

} else {

prev = next;

next = next->next;

}

}

The only tricky thing is to ensure we request more space from the kernel

than the user process asks for. We need some space to write the hidden

chunk structure. We also initialize this structure with the correct size value

since this is something we need to know if we later want to reuse the block.
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:

/* use sbrk to allocate new memory */

void *memory = sbrk(size + sizeof(struct chunk));

if (memory == (void *) - 1) {

return NULL;

} else {

struct chunk *cnk = (struct chunk*)memory;

cnk->size = size;

return (void*)(cnk + 1);

}

}

If everything works, you should be able to compile the mhysa.c module

into an object �le and then link this with the benchmark - give it a try.

$ gcc -c mhysa.c

$ gcc -o bench rand.o mhysa.o bench.c -lm

$ ./bench

How is that? It is dirt simple and not the most e�cient memory allocator,

but it looks like it is working, right?

4 How to improve

We have a system that is working, but there are lots of things that could

be improved. One problem we have is that we are still consuming far more

memory than we would need. The standard library implementation obvi-

ously can do away with far less memory. The other problem is that we

probably ask the kernel for memory more often than we would have to.

4.1 System calls

The command strace could be fun to use. This command will execute a

program but trap all system calls and print them to standard output. Try

the following:

$ strace ./bench

Too much information? Try this (we are redirecting stderr to stdout to

be able to pipe it to grep):

$ strace ./bench 2>&1 > /dev/null | grep brk | wc -l
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Try all versions of the benchmark program, one linked with the standard

library, one with mylloc.o, and one with mhysa.o. How often do we request

memory from the kernel? Are there ways to avoid this?

4.2 First, best, worst �t

We could try to be more clever when selecting a free block to reduce the

memory we use. If we look for a block of 32 bytes, using a block of 2000
bytes is quite wasteful. The least one could do is to �nd the smallest block

that would work. However, �nding a good block takes time, so this is a

trade-o�.

Even if we �nd a suitable block, we will not always �nd a perfect �t.

There will be space in an unused block, called internal fragmentation. We

could probably live with it, but if we want to reduce this waste, we come to

the solution of splitting a block in two if it is too big. Assume we look for

a block of 32 bytes, and the best we can �nd is a chunk for 78 bytes. We

could then divide the chunk into two chunks, one for 32 and the other for

34 (we lose some bytes since we need a new chunk header). This would be

much better; problem solved.

The danger of dividing chunks into too small pieces is that we will have

problems �nding larger chunks. There might be plenty of free space, but

it is divided into small chunks, called external fragmentation. The solution

to this problem is somehow to merge free chunks adjacent to each other in

memory. If we realize that the two chunks of 32 and 34 bytes that we created
are both in the free list, we can merge them and again have a chunk of 78
bytes.

If you implement a solution where you split blocks into smaller segments,

you must also implement a way to merge them into larger blocks. If not,

your free list will grow to thousands of blocks, all too small to be useful.

4.3 Keep it simple

An alternative to splitting and merging chunks is to allow a certain amount

of internal fragmentation to make things simpler. Assume we only allocate

chunks of a total size of even powers of 2, for example, 32, 64, 128, etc. A

chunk of 32 will consist of a 12 byte header and 20 bytes available for the

user (we can improve this, but it is �ne for now). Then we keep multiple

free lists for the di�erent sizes.

We will, on average, use only three-quarters of the allocated memory, but

managing the blocks becomes very simple. The nice thing about even powers

of two is that we can reduce the calls to sbrk. We always request memory of

multiples of 4096 bytes (a page). The memory is then divided into chunks of

the required size and added to the corresponding free list. Calls to malloc()

and free() are extremely fast and fragmentation is controlled.
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4.4 Let's complicate things

When you think that things are quite simple, we have to tell you what hap-

pens when we have multiple threads accessing the memory allocator concur-

rently. It is not hard to see that any solution we discussed will break. It is

possible to protect the structures with one big lock, but that would decrease

performance.

The challenge with multiple threads is to keep things separated while still

not using more resources than necessary. If a thread frees a block, then it

would be preferred if this block was later returned to the same thread. The

thread might still have the block in its cache, and it would therefore have

the advantage of being able to use it again.

5 Summary

Implementing a strategy that works well over a range of hardware systems is

a problem and far more complicated than what we have done in this exercise.

The important lesson in this exercise is that it is doable, and I am sure you

realize that you would be able to do so given more time. I also hope that

you better understand the role of malloc() and free() and that they are

working in user space. The kernel should be disturbed as little as possible,

and we achieve this by allocating larger blocks of memory than we have to.
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