
Page up and page down

Johan Montelius and Amir H. Payberah

1 Introduction

In this tutorial, you will implement an array allocation scheme that, on the
surface, behaves very much like the array framework that you implemented
in the segmentation exercise. This time you will use paging and try to
understand why you �rst must recap the problems with segmentation.

The problem with segmentation is that you will end up with fragmented
memory. Many small free memory areas together could make up a large
part of the available memory, but they are all too small to be very useful.
We could implement some compaction scheme, but this is not always easy,
and you do not want to sit around waiting for defragmentation (remember
Windows?).

To mitigate this problem, we instead use a paging scheme. You will see
that it is a bit trickier, and if we did not have hardware support in the CPU,
we would not be able to use it e�ciently.

2 Memory and arrays

Let's start as before and de�ne a memory we will use and what an array
structure will look like. The general idea is that the memory will be divided
into a sequence of frames and that each array will hold a page table that
contains one entry per page. To make the system more �exible, we de�ne
two macros that determine how many frames we will have in memory and
the size of pages/frames (they are of the same size since a page should �t
into a frame).

#define FRAMES 64

#define SIZE 16

We have chosen 64 and 16 but could, of course, have chosen anything.
The size is, however, preferably a power of two. The virtual addresses will
be broken down into an o�set (where in a page) and index (which page).
Since the page size is 16, we need four bits as an o�set, so we create a macro
that does a bit-wise and operation to select the four least signi�cant bits.
Another macro will shift an integer four bits to select the higher bits as the
page number.

1

#define Offset(addr) (addr & 0b1111)

#define PageNr(addr) (addr >> 4)

Note that to do these operations, we take for granted how an integer
(that will be our address) is represented in binary. We also de�ne two values,
FREE and TAKEN, that we will use in a structure that keeps track of which
frames are used. The memory itself is represented as an array of integers.

typedef enum available {FREE, TAKEN} available;

available framemap[FRAMES];

int memory[FRAMES*SIZE];

So now, to the actual array, the array is represented as an array or frame
numbers, i.e., the page table. We also keep track of how large this structure
is since we both want to check that we are not addressing outside of the
array bit and also since we want to return all frames when we delete the
array. The page table will use −1 to indicate that no frame has yet been
allocated to the page.

typedef struct array {

int pages;

int *pagetable; // an array of frame numbers (or -1 if not allocated)

} array;

Before you continue, you should clearly understand where we are going.
We will have a huge memory (well, not that huge) divided into frames. We
will know by looking at the frame-map if a frame is taken or not. An address
in an array is broken down into a page number and an o�set, and a page
number is translated using the page table into a frame number. Draw this
on paper; once we start to manipulate these data structures, you need to be
able to visualize what we're doing.

3 Creating an array

When an array is created, we need to �nd free frames to allocate to the array.
We, therefore, start by implementing a procedure that will search through
all frames and select the �rst free one. The frame is marked as taken, and
the frame number is returned. If no free frame is found, we return −1 to
signal that we have no more frames to o�er.

2

int find_free() {

for (int i = 0; i < FRAMES; i++) {

if (framemap[i] == FREE) {

:

}

}

return -1;

}

We are now ready to allocate an array of a given size. We �rst allocate
the array and the page table and then allocate the frames we need. If we fail
to �nd a free frame, we need to return everything, and why not then use a
delete procedure that we will de�ne later? Fill in the dotted lines, and you
should soon have this up and running.

array *allocate(int size) {

int pages = size / SIZE;

int rem = size % SIZE;

if (rem > 0)

pages += 1;

array *new = (array*) ...

int *pagetable = (int*) ...

new->pages = pages;

new->pagetable = pagetable;

for (int i = 0; i < pages; i++)

new->pagetable[i] = -1; // no frame yet allocated

printf("allocate array, frames: ");

for (int i = 0; i < pages; i++) {

int f = ...

if (f == -1) {

delete(new);

return NULL;

}

printf("%d ", f);

:

}

printf("\n");

return new;

}

To delete an array, we simply reverse what find_free() does and deal-
locate the data structures.

3

void delete(array *arr) {

int pages = arr->pages;

printf("delete array, freeing frames: ");

for(int i = 0; i < pages; i++) {

if(arr->pagetable[i] != -1) {

printf(" %d", arr->pagetable[i]);

... = FREE;

}

}

printf("\n");

free(...);

free(...);

return;

}

One more wrapper function that will create a new array if possible. If we
fail, we have nothing else to do but fail the whole computation. No garbage
collector in the world would save us since no matter how we restructure the
arrays, and we will not be able to create more free frames.

array *create(int size) {

array *new = allocate(size);

if (new == NULL) {

printf("out of memory\n");

exit(-1);

}

return new;

}

We are now ready to implement the set and get operations, which will be
slightly more complicated than the segmentation exercise. We �rst need to
divide the "address" into the page number and the o�set. Once this is done,
we check that the number is a valid page. If the page is ok, we retrieve the
frame number and access the memory location.

void set(array *arr, int pos, int val) {

printf("set: arr %p pos %d val %d\n", arr, pos, val);

int offset = Offset(pos);

int page = PageNr(pos);

if (page >= arr->pages) {

printf("segmentation fault\n");

exit(1);

}

int frame = arr->pagetable[page];

printf("set: page %d offset %d frame %d\n", page, offset, frame);

memory[frame*SIZE + offset] = val;

return;

}

4

int get(array *arr, int pos) {

printf("get: %p pos %d\n", arr, pos);

int offset = Offset(pos);

int page = PageNr(pos);

if (page >= arr->pages) {

printf("segmentation fault\n");

exit(1);

}

int frame = arr->pagetable[page];

printf("get: page %d offset %d frame %d\n", page, offset, frame);

return memory[frame*SIZE + offset];

}

Will we catch all faulty addressing of the array? What if we allocate
an array of size 40 and have a page size of 16 - what will happen when we
address position 50?

4 A �rst run

I think you are ready to do a small test run of your system. Let's write a
small benchmark to see if things work.

void bench() {

array *a = create(20);

array *b = create(40);

set(a, 10, 110);

set(a, 18, 118);

set(b, 8, 208);

set(b, 36, 212);

printf(" a[10] + a[18] = %d\n", get(a,10) + get(a, 18));

printf(" b[8] + b[36] = %d\n", get(b,8) + get(b, 36));

delete(a);

delete(b);

}

Also, try to create larger arrays than our memory and access outside of
an array. You could try to access an array with a negative index, which will
likely result in a crash. Update your implementation to catch this error and
print a nice error message.

5 Be lazy

When you know that you have things up and running, it is time to do a trick
that most operating systems do. We will be as lazy as possible and only

5

allocate frames if they are actually needed. Take a look at the allocate()

procedure; do we need to allocate all frames directly? Could we wait until
we see that they are needed?

If we want to keep track of whether a frame has been allocated, we can
extend the page table to hold more information. We could extend the page
table entry to be a small structure that holds status information, but why
not be lazy? What if we leave all entries in the page table with the value
−1?

How about this:

array *allocate(int size) {

int pages = size / SIZE;

int rem = size % SIZE;

if (rem > 0)

pages += 1;

array *new = (array*) ...

int *pagetable = (int*) ...

new->pages = pages;

new->pagetable = pagetable;

for (int i = 0; i < pages; i++)

new->pagetable[i] = -1; // no frame yet allocated

return new;

}

Now we must be very careful when we write to the array. If the page
table entry returns −1, we quickly need to �nd a free frame, insert the frame
number into the page table and then continue as if nothing has happened.
You can do this with just a few lines of code.

:

if (frame == -1) {

printf("page fault ... ");

frame = ...

if (frame == -1) {

printf("out of memory\n");

exit(-1);

}

printf("ok\n");

arr->pagetable[page] = frame;

}

:

When we �x the get() procedure, we realize that reading from a not yet
allocated page could return zero. There is no need to allocate a frame and
then do a read operation. The page has never been written to.

You are wrong if you think this is only a fun trick. This is what an
operating system does every time we request more memory. It will set up
the page table correctly but will not allocate any frames unless we actually

6

write to the pages. As you will see, we can do even more tricks by delaying
operations until they are needed.

6 Lazy copy

The lazy strategy can also be used when we copy an array. Why not try to
delay the copying procedure until it is actually needed? The idea is to create
a lazy copy of an array; the two array structures should share the frames.
We should still be able to read from either array; only when we write to any
of the two array structures will we create a copy but then only of the page
that is written to.

This will require some more bookkeeping so let's extend our page table
to hold something that can hold more information. Let's de�ne a page table
entry and then let the array hold a proper page table.

typedef enum pte_status {ALLOCATED, LAZY, SHARED} pte_status;

typedef struct pt_entry {

int frame;

pte_status status;

struct pt_entry *copy; // who else shares the frame

} pt_entry;

typedef struct array {

int pages;

pt_entry *pagetable;

} array;

This is much more interesting. An entry could now be either properly
allocated, a lazy allocation that we should �x (the −1 that we used before),
or a shared frame. If it is a shared frame, we also have a pointer to the page
table entry that is the lazy copy. This will be a bit tricky so buckle up.

First, you should go through your code (or why not create a copy and
work on the copy) and update the code so that it works with the new rep-
resentation of page table entries. Before treating it as a frame number or
−1, we must look inside the data structure to �gure out what to do. If you
look at this updated version of allocate() you will be able to update also
delete(), set() and get().

7

:

array *new = (array*)malloc(sizeof(array));

pt_entry *pagetable = (pt_entry*)malloc(sizeof(pt_entry)*pages);

new->pages = pages;

new->pagetable = pagetable;

for (int i = 0; i < pages; i++) {

pt_entry *entry = &new->pagetable[i];

entry->copy = entry; // a trick

entry->status = LAZY;

}

:

If you can run your previous benchmarks, you should be �ne. Now for
the tricky part, how do we implement copy() and what changed do we have
to do to the implementation of set(), get() and delete()? The idea is like
this, a page table entry could be in either of three states:

� ALLOCATED: a frame has been allocated for the page, and the array
is the only user of the frame.

� LAZY: a frame has not yet been allocated but will be as soon as a set
or get procedure is called.

� SHARED: a frame has been allocated, but the page is shared by two
or more arrays. As long as we read from the page, no harm is done,
but as soon as we do a write operation, we need to create a copy.

We write �two or more� since we need to handle the case when we have
taken a copy of a copy. This will complicate things since we need to keep
track of which other arrays share the page, and when there is only one left,
it should treat it as its own allocated frame.

To keep track of who else shares the frame, we link all page table entries
that share a frame in a circular list. If an entry is the only entry that holds
a reference to the frame, i.e., ALLOCATED, the copy reference is a circular
pointer to the entry itself (this is a trick that will make our coding easier).

This sounds complicated, and it is. Make some drawings of what things
could look like. Also, write down what should be done when we create a
copy of a page table entry in your own words.

� ALLOCATED: ... now shared ... SHARED

� LAZY: this is easy LAZY

� SHARED: ... could also share ... linked in a circular ...

When you have done some drawings, you are ready to copy an array; this
skeleton code should give you a head start.

8

array *copy(array *orig) {

array *copy = (array*)malloc(sizeof(array));

pt_entry *pagetable = (pt_entry*)malloc(sizeof(pt_entry) * orig->pages);

int pages = orig->pages;

copy->pages = pages;

copy->pagetable = pagetable;

for (int i = 0; i < pages; i++) {

pt_entry *orig_entry = &orig->pagetable[i];

pt_entry *copy_entry = ©->pagetable[i];

switch (orig_entry->status) {

case LAZY:

copy_entry->status = ...

copy_entry->copy = ... // circular

break;

case ALLOCATED:

case SHARED:

copy_entry->frame = ...

orig_entry->status = ...

copy_entry->status = ...

// linking in the circular structure

copy_entry->copy = ...

orig_entry->copy = ...

break;

}

}

return copy;

}

Notice that we do the same if the original entry is allocated or shared.
Suppose the original entry has an allocated frame. In that case, we simply
mark this as a copy and create the initial circular structure knowing that
an allocated array has a self-reference in the copy �eld. That was not that
complicated because the complicated copying is delayed until we do a set()

operation. When we do a set operation, we need to take care of the situation
when two or more arrays share the same page; if an entry is referring to an
allocated page or a lazy page, the situation is as before. This is what we
need to insert:

9

:

if (entry->status == SHARED) {

int f = find_free();

if (f == -1) {

delete(arr);

exit(-1);

}

for (int i = 0; i < SIZE; i++)

memory[f*SIZE + i] = memory[entry->copy->frame*SIZE + i];

entry->frame = ...

entry->status = ...

// find the entry that is previous to entry

pt_entry *prev = entry;

while (prev->copy != entry)

prev = prev->copy;

// it should now point to ...

prev->copy = ...

// and if it is pointing to itself ...

if(prev->copy == prev)

prev->status = ...

}

:

Ahh, not that complicated (it took me an hour) after all? The get()

procedure does not need any changes since reading from an allocated or
shared frame will be the same. You might want to write this as a switch
statement to make it obvious, but nothing special needs to be done. The
delete() procedure needs to be updated since we could now delete an array
that holds a shared frame. The procedure is then similar to the last part
in the set operation, i.e., we unlink the entry from the list of copies, and if
there is only one copy left, that entry is changed to allocated.

The lazy copying you have now implemented is what the operating system
does every time you do a fork(). The code area is read-only and will be
shared until either process calls exec(). The data areas will be shared until
written to, but only the pages that are written to will be copied.

10

