
Ready, blocked, or done

Johan Montelius and Amir H. Payberah

1 Introduction

Your task is to simulate a scheduling algorithm as we re�ne it from something
that does hardly anything to something that is almost useful.

2 Jobs and queues

Our scheduler will keep track of a set of jobs that will be in either of three
lists: ready, blocked, and done. All jobs will be created from the start and
placed on the list of blocked jobs. In each iteration, the simulator will:

� unblock jobs that are ready to run by moving them from the blocked
queue to the ready queue,

� schedule one job from the ready queue for execution, and

� depending on the result, move it to either of the three lists.

The jobs that the simulator will handle will not do anything. The simu-
lator only knows how much time a job needs to complete its tasks and how
often it will do an I/O operation as we extend the simulator. The simulator
will collect statistics and, in the end, be able to answer questions such as
turnaround time and response time for each job.

We de�ne a structure to represent jobs, and we will keep it simple to
start with. The only properties we are interested in right now are arrival
time, unblock time, total execution time, and the ratio of I/O operations.

typedef struct job {

int id;

int arrival;

int unblock;

int exectime;

float ioratio;

struct job *next;

} job;

The unblock time will initially be set to a value that speci�es when the
job arrives in the system. If the job is blocked due to an I/O operation,
the value will indicate when the operation is completed, and the job could
again be scheduled. We will create a unique identi�er when we initiate
the simulation. To quickly set up a benchmark, we also de�ne a structure
describing the di�erent jobs we should use.

1

typedef struct spec {

int arrival;

int exectime;

float ioratio;

} spec;

The initialization could then look as follows; we create a global array
with 10 jobs and one dummy speci�cation in the end. The jobs could be
given in any order, although they are here listed in the order they arrive.

spec specs[] = {

{ 0, 10, 0.0},

{ 0, 30, 0.7},

{ 0, 20, 0.0},

{ 40, 80, 0.4},

{ 60, 30, 0.3},

{120, 90, 0.3},

{120, 40, 0.5},

{140, 20, 0.2},

{160, 10, 0.3},

{180, 20, 0.3},

{0, 0, 0} // dummy job

};

We have the three queues as global pointers, which are all null pointers
to start with.

job *readyq = NULL;

job *blockedq = NULL;

job *doneq = NULL;

The simulator should �rst go through the speci�cations and create jobs
that are added to the queue of blocked jobs.

void init() {

int i = 0;

while (specs[i].exectime != 0) {

job *new = (job *)malloc(sizeof(job));

new->id = i + 1;

new->arrival = specs[i].arrival;

new->unblock = specs[i].arrival;

new->exectime = specs[i].exectime;

new->ioratio = specs[i].ioratio;

block(new);

i++;

}

}

When we add the jobs to the blocked queue, we order them so that the
jobs with the lowest arrival time are �rst.

2

void block(job *this) {

job *nxt = blockedq;

job *prev = NULL;

while (nxt != NULL) {

if (this->unblock < nxt->unblock)

break;

else {

prev = nxt;

nxt = nxt->next;

}

}

this->next = nxt;

if (prev != NULL)

prev->next = this;

else

blockedq = this;

return;

}

The simulator will keep track of time and move jobs from the blocked

queue to the ready queue. Since the jobs are ordered, we do not have to
search the whole queue. A printout will trace what is happening.

void unblock(int time) {

while (blockedq != NULL && blockedq->unblock <= time) {

job *nxt = blockedq;

blockedq = nxt->next;

printf("(%4d)unblock job %2d\n", time, nxt->id);

ready(nxt);

}

}

In the �rst run, we simply add jobs at the end of the ready queue. This
might not be optimal, but why complicate things.

void ready(job *this) {

job *nxt = readyq;

job *prev = NULL;

while (nxt != NULL) {

prev = nxt;

nxt = nxt->next;

}

this->next = nxt;

if (prev == NULL)

readyq = this;

else

prev->next = this;

return;

}

3

When jobs have terminated, they are added to the done queue. The
order in this queue is not important, so we might as well add them to the
beginning.

void done(job *this) {

this->next = doneq;

doneq = this;

return;

}

3 The scheduler

The scheduler's job is to select the �rst job from the ready queue and let it
�execute�. Since this is only a simulation and the jobs do not do anything,
we simply set the remaining execution time to zero and move it to the list of
terminated jobs. Note - we now allow jobs to execute until they end; there
is no preemption.

int schedule(int time) {

if (readyq != NULL) {

job *nxt = readyq;

readyq = readyq->next;

int exect = nxt->exectime;

nxt->exectime = 0;

printf("(%4d)run job %2d for %3d ms\n", time, nxt->id, exect);

done(nxt);

return exect;

} else

return 1;

}

The schedule() procedure returns how long time has passed, and for
this simple scheduler, it is the total execution time of the job. If there is no
job in the ready queue, it returns 1 to drive the simulation forward (why
would the ready queue be empty?). The procedure does not need to know
the time right now, but we will need it later, and for now, we can use it to
do the printout.

So now we have all the pieces to the puzzle and can create our �rst
scheduler and take it for a spin. Remember to include the proper header
�les in the beginning and that you need to order the procedures (or declare
them) so that you do not use a procedure before it is declared.

4

int main() {

init();

int time = 0;

while (blockedq != NULL || readyq != NULL) {

unblock(time);

int tick = schedule(time);

time += tick;

}

printf("\ntotal execution time is %d \n", time);

return 0;

}

I hope it worked. Now let's add some more features to the scheduler.

4 Shortest job �rst

We might �rst try to adopt the shortest job �rst strategy. Everything will
look the same, but when we add jobs to the ready queue, we order them so
that the shortest jobs occur �rst. If you add a test to the ready() while-loop,
you should be able to do it in no time. The result is not immediately visible
since the total execution time is the same. What could have improved in
the average turnaround time? We add a �eld to the job structure to check
if this is the case.

typedef struct job {

:

int turnaround;

:

} job;

In the schedule() procedure we now calculate the turnaround time.

:

nxt->turnaround = time + exect - nxt->arrival;

:

We can run through all the jobs in the done queue in the main procedure
and collect the average turnaround time.

5

:

int turnaround = 0;

int jobs = 0;

for (job *nxt = doneq; nxt != NULL; nxt = nxt->next) {

jobs += 1;

turnaround += nxt->turnaround;

}

printf("\naverage turnaround: %d \n", turnaround/jobs);

:

Try with and without ordering the ready queue, any di�erence?

5 Preemptive scheduling

What is the response time for each job? The response time is the time from
arrival until scheduled so let's keep track of this. We add another �eld to
the job structure.

typedef struct job {

:

int respons;

:

} job;

Then we ensure that this �eld is zero when we create new jobs in the
init() procedure. We set it to zero in the initialization, and when the job
is scheduled, we calculate the respons time. In the end, we can calculate the
average response time for all jobs. Is there something we can do to improve
the response time? How about moving to a preemptive scheduler? Let's
provide an argument to the simulator that sets the time slot that we will
give each job. We then pass this parameter to the schedule() procedure.

int main(int argc, char *argv[]) {

int slot = 10;

if (argc == 2) {

slot = atoi(argv[1]);

}

:

while (blockedq != NULL || readyq != NULL) {

:

int tick = schedule(time, slot);

:

}

:

The execution time of a job will be updated to hold the time to comple-

tion. Every time we schedule a job, we �rst check if the time to completion

6

is less or equal to the time slot given. If this is so, the code is very similar
to before. Otherwise, if the time to completion is longer than the time slot,
we should decrease the time and return the job to the ready queue. We
will use zero to indicate that the response time has not yet been set (this is
something we will use later)

In the schedule() procedure, we can now check if it is the �rst time that
the job is scheduled, and if so, �ll in the response time as the current time
minus the arrival time. Note that we now will have to check if the response
time has already been set. If the response time is still zero, we know it is
the �rst time the job is scheduled, and we update the value. This is what it
could look like:

:

if(nxt->respons == 0)

nxt->respons = time - nxt->arrival;

int left = nxt->exectime;

int exect = (left < slot) ? left : slot;

nxt->exectime -= exect;

printf("(%4d)run job %2d for %3d ms ", time, nxt->id, exect);

if (nxt->exectime == 0) {

nxt->turnaround = time + exect - nxt->arrival;

printf(" - done\n");

done(nxt);

} else {

ready(nxt);

printf("- %3d left \n", nxt->exectime);

}

return exect;

If you try a time slot of 100, everything will work as before since no job
has an execution time greater than 90. If you decrease the time slot, you will
see more scheduling events, and you might see the response time improve.

6 I/O operations

So now, for the last problem, what happens if a job performs an I/O oper-
ation? Let's say that an I/O operation takes 30 ms to complete, and some
jobs will do an operation once in a while. We will extend our simulation to
handle I/O operations and then try a smarter scheduler. We assume that
all I/O operations take 30 ms and de�ne this as a macro. We also write a
small routine that will �ip a coin and determine if, given the I/O ratio of
the job, an I/O operation is performed. If no I/O operation is performed, it
returns zero; otherwise, it returns how long time passes before the operation
happens (from 1 to exect -1). We will not use this information now but need
it later.

7

#define IO_TIME 30

int io_op(float ratio, int exect) {

int io = ((float)rand()) / RAND_MAX < ratio;

if(io)

io = (int)trunc(((float)rand()) / RAND_MAX * (exect - 1)) + 1;

return io;

}

To compile this, you need to include stdlib.h and compile with the
math library using the �ag -lm. Once this is in place, we can modify the
schedule() procedure. Note that we are not doing anything else while
the job is doing the I/O operation. The procedure will simply return the
execution time plus the time it took to do the I/O operation.

:

int io = 0;

if (exect > 1)

io = io_op(nxt->ioratio, exect);

nxt->exectime -= exect;

printf("(%4d) run job %2d for %3d ms ", time, nxt->id, exect);

if (nxt->exectime == 0) {

nxt->turnaround = time + exect - nxt->arrival;

printf("- done\n");

done(nxt);

} else {

if (io) {

ready(nxt);

printf("- %3d left - I/O \n", nxt->exectime);

exect += IO_TIME;

} else {

ready(nxt);

printf(" - %3d left \n", nxt->exectime);

}

}

return exect;

Give it a try and see what happens. The total execution time will prob-
ably increase, which is quite understandable. We are sitting around waiting
for I/O operations. Is there something we can do?

7 Block jobs until I/O completed

A CPU is basically doing nothing while an I/O operation is done. To just sit
around and wait is a complete waste of time. If we could schedule another
job in the meantime, we would improve the situation. How about moving
jobs back to the blocked queue until they are ready to execute again? It
turns out that we have all pieces to the puzzle to do this so we only have to

8

change the scheduler slightly. First we set the execution time to whatever
the io_op() function returns (if it is di�erent from zero).

if (exect > 1) {

io = io_op(nxt->ioratio, exect);

if (io)

exect = io;

}

Then we change what we do if an I/O operation is issued. We set the
unblock value of the job and return it to the queue of blocked jobs instead
of the ready queue. We also patch the printout to see what is happening.

if (io) {

nxt->unblock = time + exect + IO_TIME;

block(nxt);

printf("- %3d left - blocked\n", nxt->exectime);

} else {

ready(nxt);

printf("- %3d left\n", nxt->exectime);

}

8 What's more?

The scheduler we have now is still very simple. It keeps all jobs that are
ready to execute in one queue. The queue is ordered so that jobs with a
short completion time will be handled �rst. However, one can question if
this is always relevant or if this information is known. If we do not know
the time to completion, which job should we select for execution? Should we
have jobs with di�erent priorities, or should we have several queues? If you
extend this scheduler, you will soon end up with something that looks like
a multi-level feedback queue scheduler where jobs that do I/O operations are
given priority.

9

