
Make a thread

Amir H. Payberah

Introduction

In this assignment, you will work with threads by creating and passing ar-

guments to them. You will use the pthreads library to do this assignment.

When you compile a program that uses this library, you need to indicate

your desire to use pthreads by adding the -pthread option at the end of

the compiler command line. This option speci�es that the pthreads library

should be linked.

$ gcc -o myprog myprog.c -pthread

1 Creating and destroying threads

The �rst step to understanding how to build a multi-threaded program is

to understand how to create and destroy threads. To create a new thread

you need to use the pthread_create() function. It gives back a thread

identi�er that can be used in other calls. The second parameter is a pointer

to a thread attribute object, and NULL means to use the default attributes

(suitable for many cases). The third parameter is a pointer to the thread's

function to execute, and the �nal parameter is the argument passed to the

thread function. Your program should then wait for each thread to terminate

and collect its results by calling pthread_join().

1



#include <pthread.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void *threadfunction(void *arg) {
printf("%s\n", (char *)arg);
return 0;

}

int main() {
pthread_t thread;
char *msg = "Hello world!";

int createerror = pthread_create(&thread, NULL, threadfunction, msg);

pthread_join(thread, NULL);

return 0;
}

Now, you have two threads, each gets a number, and the main process

waits for them to �nish:

void *thread_func(void *arg) {
printf("I am thread #%d\n", *(int *)arg);
return NULL;

}

int main() {
pthread_t t1, t2;
int i = 1;
int j = 2;

pthread_create(&t1, NULL, &thread_func, &i);
pthread_create(&t2, NULL, &thread_func, &j);

pthread_join(t1, NULL);
pthread_join(t2, NULL);

printf("In main thread\n");
return 0;

}

2 Returning results from threads

Note that the thread functions are declared to return a pointer to void.

However, there are some pitfalls involved in using that pointer. The code

below shows one attempt at returning an integer status code from a thread

function.

2



void *thread_func(void *arg) {
int code = 5;
return (void *)code ;

}

This method will only work on machines where integers can be converted

to a pointer and then back to an integer without losing information. On some

machines, such conversions are dangerous. This method will fail in all cases

where one attempts to return an object, such as a structure, that is larger

than a pointer. In contrast, the code below does not �ght the type system

and returns a pointer to an internal bu�er where the return value is stored.

While the example shows an array of characters for the bu�er, one can easily

imagine it being an array of any necessary type or a single object, such as

an integer status code or a structure with many members.

void *thread_func(void *arg) {
char buffer[64] = "Hello world!";
return buffer;

}

The code above fails because the internal bu�er is automatic and vanishes

as soon as the thread function returns. The pointer, which is given back to

the calling thread, points at unde�ned memory. This is another example

of the classic dangling pointer error. In the next attempt, the bu�er is

made static so that it will continue to exist even after the thread function

terminates. This gets around the dangling pointer problem.

void *thread_func(void *arg) {
static char buffer[64] = "Hello world!";
return buffer;

}

This method might be satisfactory in some cases, but it does not work in

the common case of multiple threads running the same thread function. In

such a situation, the second thread will overwrite the static bu�er with its

own data and destroy the data left by the �rst thread. Global data su�ers

from this same problem since global data always has a static duration. The

version below is the most general and most robust.

void *thread_func(void *arg) {
char *buffer = (char *)malloc(64);
buffer = "Hello world!";
return buffer;

}

3



This version allocates bu�er space dynamically. This approach will work

correctly even if multiple threads execute the thread function. Each will

allocate a di�erent array and store the address of that array in a stack

variable. Every thread has its own stack, so automatic data objects are

di�erent for each thread. In order to receive the return value of a thread,

the higher-level thread must join with the subordinate thread.

void *threadresult;

// Wait for the thread to terminate.

pthreadÙjoin(threadID, &threadresult);

The pthread_join() function blocks until the thread speci�ed by its �rst

argument terminates. It then stores into the pointer pointed at by its second

argument the value returned by the thread function. To use this pointer, the

higher-level thread must cast it into an appropriate type and dereference it.

char *message ;
message = (char *)threadresult ;
printf("I got %s back from the thread.\ n", message);
free(threadresult);

If the thread function dynamically allocates the space for the return

value, then the higher-level thread needs to free that space when it no longer

needs the return value. If this is not done, the program will leak memory.

Below, you can see a complete code of returning results from threads.

4



struct thread_args {
int a;
double b;

};

struct thread_result {
long x;
double y;

};

void *thread_func(void *args) {
struct thread_args *args = args;
struct thread_result *res = malloc(sizeof *res);

res->x = 10 + args->a;
res->y = args->a * args->b;
return res;

}

int main() {
pthread_t threadL;
struct thread_args in = {.a = 10, .b = 3.141592653};
void *out_void;
struct thread_result *out;

pthread_create(&threadL, NULL, thread_func, &in);
pthread_join(threadL, &out_void);
out = out_void;
printf("out -> x = %ld\tout -> b = %f\n", out->x, out->y);
free(out);

return 0;
}

3 Acknowledge

The main part of this assignment is derived from the �pthread tutorial� by

Peter C. Chapin.

5


