
Hello Dolly

Johan Montelius and Amir H. Payberah

1 Introduction

This is an experiment where we will explore how processes are created and
what is shared between them. You should have a basic understanding of
processes, but we will not assume you're an expert C programmer.

We will use the library procedure fork(), so �rst, take a look at the
manual pages. You will probably not understand everything they talk about,
but we get the important information that we need to start experimenting.

$ man fork

We see that fork requires the library unistd.h, so we need to include this
in our program. We also read that fork will return a value of type pid_t.
This type is de�ned in a header �le included by unistd.h and is a way of
making the code architecture independent. We will ignore this and assume
that pid_t is a int. Further down the man pages we read that fork returns
both the process identi�er of the child process and zero. This is strange; how
can a procedure return two di�erent values? Let's give it a try, create a �le
called dolly.c and write the following:

#include <stdio.h>

#include <unistd.h>

int main() {

int pid = fork();

printf("pid = %d\n", pid);

return 0;

}

The above program will call fork and then print the returned value.
Compile and run this program, what is happening?

2 The parent and the child

So, calling fork() somehow creates a duplicate of the executing process,
and the execution then continues in both copies. By looking at the returned
value, we can determine if we are executing in the parent process or if we are
in the child process. Try this extension to the program:

1

int main() {

int pid = fork();

if(pid == 0)

printf("I'm the child %d\n", getpid());

else

printf("My child is called %d\n", pid);

printf("That's it %d\n", getpid());

return 0;

}

This is not the only way this could have been implemented. One could,
for example, have chosen to have a construction where we would provide
a function that the child process would call. Di�erent operating systems
have chosen di�erent strategies, and Windows, for example, have chosen to
provide a procedure that creates a new process independent of the parent
process.

2.1 Wait a minute

To terminate the program in a more controlled way, we can have the parent
wait() for the child process to terminate. Try the following:

int main() {

int pid = fork();

if(pid == 0) {

printf("I'm the child %d\n", getpid());

sleep(1);

} else {

printf("My child is called %d\n", pid);

wait(NULL);

printf("My child has terminated \n");

}

printf("This is the end (%d)\n", getpid());

return 0;

}

The parent process waits for its child process to terminate (actually, it
waits for any child it has spawned). Only then will it proceed, print out the
last row and terminate.

2.2 Returning a value

A process can produce a value (e.g., an integer) when it terminates, and the
parent process can pick up this value. If we change the program so that the
child process returns 42 as it exists, the value can be picked up using the
wait() procedure.

2

if(pid == 0)

return 42;

else {

int res;

wait(&res);

printf("the result was %d\n", WEXITSTATUS(res));

}

2.3 A zombie

A zombie is a process that has terminated but whose parent process has not
yet been informed. As long as the parent has not issued a call to wait(),
we need to keep part of the child process. When calling wait(), the par-
ent process should be able to pick up the exit status of the child process
and possibly a return value. This information is lost if the child process is
completely removed from the system.

We can see this in action if we terminate the child process but wait for a
while before calling wait(). Do the following changes to the program, call
it zombie.c, compile and run it in the background.

if(pid == 0) {

printf("check the status\n");

sleep(10);

printf("and again\n");

return 42;

} else {

sleep(20);

int res;

wait(&res);

printf("the result was %d\n", WEXITSTATUS(res));

printf("and again\n");

sleep(10);

}

return 0;

}

Check the status of the processes using the ps command. Notice how
the two processes are created and how the child becomes a zombie and is
removed from the system once we receive the return value.

$ gcc -o zombie zombie.c

$./zombie&

:

$ ps -ao pid,stat,command

:

3

2.4 A clone of the process

So we have created a child process that is a clone of the parent process. The
child is a copy of the parent with an identical memory. We can exemplify
this by showing that the child has access to the same data structures but
that the structures are just copies of the original data structures. Extend
dolly.c and try the following:

int main() {

int pid;

int x = 123;

pid = fork();

if(pid == 0) {

printf(" child: x is %d\n", x);

x = 42;

sleep(1);

printf(" child: x is %d\n", x);

} else {

printf(" mother: x is %d\n", x);

x = 13;

sleep(1);

printf(" mother: x is %d\n", x);

wait(NULL);

}

return 0;

As you see, both the parent and the child sees ha variable x as 123 but the
changes made are only visible by themselves. If you want to see something
very strange you can change the printout to also print the memory address
of the variable x. Do this for both the parent and the child, and you will see
that they are actually referring to the same memory locations.

printf(" child: x is %d and the address is 0x%p\n", x, &x);

The explanation is that processes use virtual addresses and are identical,
but they are mapped to di�erent real memory addresses. How this is achieved
is nothing that we should explore now, but it is fun to see that it is working.

2.5 What we do share

Since the child process is a clone of the parent process, we do share some
parts. One thing that we do share is references to open �les. When a process
opens a �le, the operating system creates a �le table entry. The process is
given a reference to this entry, which is stored in a �le descriptor table owned
by the process. When the process is cloned, this table is copied, and all the
references are pointing to the same entries in the �le table. The standard
output is nothing more than an entry in the �le descriptor table, so this is

4

why both processes can write to the standard output. We also read from the
same standard input, so we also have a race condition.

If you look at man pages, you will see a whole range of structures that
the processes share or not share, but most of those are not very interesting
to us in this set of experiments.hose are not very interesting to us in this set
of experiments.

3 Groups, orphans, sessions, and daemons

The parent process has a special relationship to the child process. The parent
process has to keep track of its child, and a child always knows the process
identi�er of its parent.

int main() {

int pid = fork();

if(pid == 0) {

printf("I'm the child %d with parent %d\n", getpid(), getppid());

} else {

printf("I'm the parent %d with parent %d\n", getpid(), getppid());

wait(NULL);

}

return 0;

}

Compile and run this in a terminal. Who is the parent of the parent
process? The following commands might give you a clue.

$ ps a

:

$ echo $$

:

We could �nd more information about the processes using some �ags to
ps. Try ps -fp $$ to see more details about the shell you are using ($$ will
expand to the process identi�er of the shell). The PPID �eld is the parent
process identi�er. Who is the parent of the shell? Where does it all stop?

3.1 The group

The fate of a parent and its child is not directly linked to each other, but they
belong to the same process group. Each process group has a process leader,
and in our simple examples, the parent process has been the group's leader.
The group identi�er/leader is retrieved using the system call getpgid().

5

int main() {

int pid = fork();

if(pid == 0) {

int child = getpid();

printf("I'm the child %d in group %d\n", child, getpgid(child));

} else {

int parent = getpid();

printf("I'm the parent %d in group %d\n", parent, getpgid(parent));

wait(NULL);

}

return 0;

}

A group is treated as a unit by the shell. It can set a whole group to
suspend, resume or run in the background (allowing the shell to use the
standard input for interaction). However, we will not go into how the shell
works, so let's just accept that processes belong to a process group.

3.2 Ophans

As a change, we can try to crash the parent process and see what happens
with the child process.

int main() {

int pid = fork();

if(pid == 0) {

int child = getpid();

printf("child: parent %d, group %d\n", getppid(), getpgid(child));

sleep(4);

printf("child: parent %d, group %d\n", getppid(), getpgid(child));

sleep(4);

printf("child: parent %d, group %d\n", getppid(), getpgid(child));

} else {

int parent = getpid();

printf("parent: parent %d, group %d\n", getppid(), getpgid(parent));

sleep(2);

int zero = 0;

int i = 3 / zero;

}

return 0;

}

Save the program in a �le called orphan.c. Compile and execute the
program, and notice how the parent identi�er of the child process changes.
The process has turned into an orphan and adopted by the upstart process
(or init or systemd depending on which system you using). Note the new
process identi�er and then check its state using the ps command:

6

$ ps <whatever the process id was>

:

To see something fun, you can take a look at the process tree of the
process:

$ pstree <whatever the process id was>

:

3.3 Sessions and daemons

The origin of the notion of a session is a user attaching and logging in to the
system. A session consists of a set of groups and a session leader. As with
groups, the sessions have identi�ers equal to the leader's process identi�er.
Compile and run the program below. Which process is the session leader of
our processes?

int main() {

int pid = fork();

if(pid == 0) {

int child = getpid();

printf("child: session %d\n", getsid(child));

} else {

int parent = getpid();

printf("parent: session %d\n", getsid(parent));

}

return 0;

}

When you start a new terminal, a new session is created. The operating
system keeps track of sessions and will terminate all groups in a session if
the session leader terminates. This means that if you log in to a system
and start to run processes in the background, they still belong to the same
session as your login shell and will be terminated if the session terminates.

If one wants to create a process that should survive the session, it must
form its own session. It becomes a daemon, a process running in the back-
ground detached from any controlling terminal. Daemons perform many of
the tasks performed by the operating system. They keep track of network in-
terfaces, USB devices and schedule tasks that should run periodically. Your
system will probably have �fty daemons running in the background, but they
consume very few resources.

7

4 Starting a program

So far, we have seen how a process can be created and how the child process
is related to its parent process. To understand how an operating system
works, there is one more very important functionality that we will take a
look at: how we create a process that will execute another program.

When you use the command shell, this happens (almost) every time
you enter a command. The shell interprets some commands and will do
something for us, but most �commands� are programs the shell will start for
us. How is a program actually started?

4.1 transforming a process

In Unix systems, the execution of a program is done by transforming an
existing process to run the code of the given program. As you will see,
starting a program is done in two steps: (1) creating the new process and
(2) transforming the process into executing the program. The mechanism
that makes this possible is the family of exec() system calls. Look-up the
man pages of exec, we will use the one called execlp().

int main() {

int pid = fork();

if(pid == 0) {

execlp("ls", "ls", NULL);

printf("this will only happen if exec fails\n");

} else {

wait(NULL);

printf("we're done\n");

}

return 0;

}

The call to execlp() will �nd the program ls and then replace the
code and data segments of the process with the code and data found in the
executable binary. The stack and heap areas are reset, so the program starts
the execution from scratch.

4.2 Redirection

Even if the memory segments of the process are cleared, the process keeps
the �le descriptor table. By changing the table entries, we can make the
program read from a standard input of our choice and redirect the standard
output. This allows us to control the I/O operations of the program without
changing the program in any way. We can create a small program that does
nothing but writes to standard output to see how this works. Let's call this
program boba.c.

8

int main() {

printf("Don't get in my way.\n");

return 0;

}

Now, if we compile and run this program, we will see the quote printed
in the terminal.

$gcc -o boba boba.c

:

$./boba

:

Note that we have to write ./boba and not simply boba if you have not
set up your PATH variable also to include the current directory; more on this
later. Now, if we want to redirect the output to a �le called quotes.txt we
could do this from the shell directly.

$./boba > quotes.txt

:

To understand how the shell achieves this, we could try to write a pro-
gram jango.c, that clones itself, redirects the standard output, and then
transforms the clone into boba. Let's go:

int main() {

int pid = fork();

if(pid == 0) {

int fd = open("quotes.txt", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);

dup2(fd, 1);

close(fd);

execl("boba", "boba", NULL);

printf("this only happens on failure\n");

} else {

wait(NULL);

}

return 0;

}

In the jango.c program we open a �le quotes.txt (providing �ags to
open it in read-write mode and create it if does not exist). The operating
system will grate a new �le table entry and add a reference to it in our �le
descriptor table. The table entry will be the �rst free entry in the table (3).
We then use the system call dup2() to copy the entry to position 1 (the
location of stdout). We then close the fd entry since we will not use this
entry anymore. When we now call execl(), the process will turn into boba.
The boba program knows nothing about what happened but will direct all

9

output to �le descriptor 1 as usual. Try it, and you will see that the �le is
created and that we will receive the output as expected.

4.3 Pipes

The full beauty of how standard input and output can be redirected is shown
when we introduce the concept of pipes. A pipe is a FIFO bu�er of characters,
and when created, we will allocate two �le descriptor entries. One entry
is for reading and the other for writing. Since we are in full control over
the descriptor table before we start executing a program, we can make one
program send all the output to another program's input. This is a very
powerful tool from the shell to combine sequences of commands.

Assume we have the commands (or rather programs) ps axo sid that
will print the session identi�er of every process in the system, sort -u that
will sort lines and output only unique and wc -l that will count the number
of lines. How do we combine these to �nd the number of sessions in the
system? Using the shell, this is done in one line:

$ ps xao sid | sort -u | wc -l

:

This is achieved using pipes, and we can set it up ourselves in a program.
There are, however, a lot of details to get it right, and we will explore this
later in the course. For now, you should explore using the pipes from the
command line.

5 Summary

Processes are created by cloning an existing process, the execution continues
in the two duplicates, and the only way to tell which copy we are executing
is to look at the value returned from fork(). A parent and child process
are in the same process group. If the group leader terminates, all processes
in the group will be sent a signal that will likely cause them to terminate.
Several groups belong to a session with a controlling terminal. If the session
leader terminates or the controlling terminal closes, the whole session will be
terminated. A session that has been detached from any controlling terminal
is called a daemon. Daemons handle many of the tasks that constitute an
operating system. Two copies have identical copies of �le descriptor tables

referring to the same �le table entries. By changing the descriptor tables,
the input and output of a process can be redirected. Two processes can use
this to set up a pipe between them that acts as a bu�ered FIFO channel.
A process can be transformed to run another program using the system call
exec(). This will reset all memory segments, but the transformed process
keeps the �le descriptor table.

10

