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Introduction

In this assignment, you will investigate the layout of a process: where di�er-
ent areas are located and which data structures go where.

1 Where's da party?

So we will �rst take a look at the code segment, and we will do so using a
gcc extension to the C language. Using this extension, you can store a label

in a variable and then use it as any other value.

1.1 The memory map

Start by writing and compiling this small C program, code.c. As you see,
we use two constructs that you might not have seen before, the label foo:
and the conversion of the label to a value in &&foo. If everything works �ne,
you should see the address of the foo label printed in the terminal. The
program will then hang, waiting for keyboard input (actually anything on
the standard input stream).

#include <stdio.h>

int main() {

foo:

printf("the code: %p\n", &&foo);

fgetc(stdin);

return 0;

}

So we have the address of the foo label, it could be something that
looks like 0x40052a (but could also be 0x55d8ef4426ce depending on which
version of Linux you are running). Hit any key to allow the program to
terminate, and then we try something else. We will now tell the shell to
start the process in the background. That will allow us to use the shell while
the program is suspended, waiting for input.
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> ./code&

[1] 2708

the code: 0x55968c40f6ce

The number 2708 (or whatever you see) is the process identi�er of the
process. Now we take a look in the directory /proc, where we �nd a directory
with the name of the process identi�er. There are about �fty di�erent �les
and directories in this directory, but the only one we are interested in is the
�le maps. Take a look at it using the cat command 1.

$ cat /proc/2708/maps

:

What you see is the memory mapping of the process. Can you locate the
code segment? Does it correspond to the address we found looking at the
foo label? What is the protection of this segment? To bring the suspended
process back to the foreground, you use the fg command. Then you can hit
any key to allow the program to terminate.

> fg

./code

1.2 Code and read only data

To make things a bit more convenient, we extend our program so that it will
get its own process identi�er and then print out the content of proc/<pid>/maps.
We do this using a library procedure system() that will read a command
from a string and then execute it in a sub-process.

1OSX users can try: usr/bin/vmmap 2708
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#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

char global[] = "This is a global string";

int main() {

int pid = getpid();

foo:

printf("process id: %d\n", pid);

printf("global string: %p\n", &global);

printf("the code: %p\n", &&foo);

printf("\n\n /proc/%d/maps \n\n", pid);

char command[50];

sprintf(command, "cat /proc/%d/maps", pid);

system(command);

return 0;

}

Look at the address of the global string. In which segment do you �nd it?
What is the protection of this segment? Does it make sense? Now allocate
a global constant data structure, print its address, and try to locate it -
hmmm, is it where you thought it would be?

const int read_only = 123456;

:

printf("read only: %p\n", &read_only);

:

2 The stack

The stack in C/Linux is located almost at the top of the user space and
grows downwards. You will �nd it in the process map, and the entry will
probably look something like this:

7ffed89d4000-7ffed89f5000 rw-p 00000000 00:00 0 [stack]

Before we start to play around with the stack, we ponder the memory
layout of the process and how it is related to the x86 architecture.

2.1 The address space of a process

The addresses on a 64-bit x86 machine are 8 bytes wide or 16 nibbles (4-bit
unit corresponding to one hex digit). Look at the address 0x7ffed89f5000.
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How many bits are used? What is the 48th bit? In an x86-64 architecture,
an address �eld is 64-bits, but only 48 are used. The uppermost bits (63 to
47) should all be the same; generally, if they are 0, it is the user space, and
if they are 1, it is the kernel space. The user space thus ends in:

0x00 00 7f ff ff ff ff ff

The kernel space then starts in the logical address:

0xff ff 80 00 00 00 00 00

2.2 Back to the stack

So we have a stack, and it should be no mystery what data structures are
allocated on the stack. We extend our program with a data structure that
is local to the main procedure and tracks where it is allocated in memory.

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

int pid = getpid();

unsigned long p = 0x1;

printf("p (0x%lx): %p \n", p, &p);

printf("\n\n /proc/%d/maps \n\n", pid);

char command[50];

sprintf(command, "cat /proc/%d/maps", pid);

system(command);

return 0;

}

Execute the program and verify that the location of p is actually in the
stack segment. If you run the programs several times, you will notice that
the stack segment moves around a bit. This is by intention; it should be
harder for a hacker to exploit a stack over�ow and change things in the heap
or vice versa. If you want the stack segment to stay put, you can try to give
the following command in the shell:

$ setarch $(uname -m) -R bash
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2.3 Pushing things on the stack

Now let's do some procedure calls and see if we can see how the stack grows
and what is placed on it. We keep the address of p, make some calls, and
then print the content from the location of another local variable and the
address of p. The procedure zot() is the procedure that will do the printing,
and it requires an address and will then print one line per item on the stack.
We should maybe check that the given address is higher than the address of
the local variable r, but it is more fun living on the edge.

void zot(unsigned long *stop) {

unsigned long r = 0x3;

unsigned long *i;

for(i = &r; i <= stop; i++)

printf("%p 0x%lx\n", i, *i);

}

We use an intermediate procedure called foo() that we only use to create
another stack frame.

void foo(unsigned long *stop ) {

unsigned long q = 0x2;

zot(stop);

}

Now for the main() procedure that will call foo() and do some additional
print out of the location of p and the return address back.

int main() {

int pid = getpid();

unsigned long p = 0x1;

foo(&p);

back:

printf(" p: %p \n", &p);

printf(" back: %p \n", &&back);

printf("\n\n /proc/%d/maps \n\n", pid);

char command[50];

sprintf(command, "cat /proc/%d/maps", pid);

system(command);

return 0;

}

If this works, you should have a nice stack trace. The interesting thing
is now to �gure out why the stack looks like it does. If you know the general
structure of a stack frame, you should be able to identify the return address
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after the call to foo() and zot(). You should also be able to identify the
saved base stack point, i.e., the value of the stack pointer, before the local
procedure starts to add things to the stack. You also see the local data
structures: p, q, r and a copy of the address to p. If it was a vanilla stack,
you could also see the argument for the procedures. However, gcc on an x86
architecture will place the �rst six arguments in registers, so those will not
be on the stack. You can add ten dummy arguments to the procedures, and
you will see them on the stack.

If you do some experiments and encounter elements that can not be
explained, it might be that the compiler just skips some bytes to keep the
stack frames aligned to a 16-byte boundary. The base stack pointer will thus
always end with a 0. Try locating the value of the variable i in the zot()

procedure. It is, of course, a moving target, but what is the value of i when
the location of i is printed? Can you �nd the value of the process identi�er?
Convert the decimal format to hex, and it should be there somewhere.

3 The Heap

Ok, so we have identi�ed the code segment, a data segment for global data
structures, a strange kernel segment, and the stack segment. It is time to
take a look at the heap. The heap is used for data structures that are created
dynamically during runtime. It is needed when we have data structures that
have a size that is only known at runtime or should survive the return of
a procedure call. Anything that should survive returning from a procedure
can not be allocated on the stack. In C, there is no program construct to
allocate data on the heap; instead, a library call is used, i,e., the malloc()

procedure (and its siblings). When malloc() is called, it will allocate an
area on the heap - let's see if we can spot it.

Create a new �le heap.c and cut and paste the structure of our main
procedure. Keep the tricky part the printing the memory map but now
include the following section:

char *heap = malloc(20);

printf("the heap variable at: %p\n", &heap);

printf("pointing to: %p\n", heap);

Locate the location of the heap variable. It is probably where you would
suspect it to be. Where is it pointing to, a location in the heap segment?

3.1 Free and reuse

The problem with using the heap is not how to allocate memory but to free
it, only free it once and not use the freed memory. The compiler will detect
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some apparent errors, but most errors will only appear at runtime and might
be very hard to track down. If you allocate a data structure of 20 bytes every
millisecond and forget to free it, you might run out of memory in a day or
two, but if you only run small benchmarks, you will never notice.

Using a pointer to a data structure that has been free has an unde�ned

behavior meaning that the compiler nor the execution needs to preserve any
predictable behavior. This said, we could play around with it and see what
might happen. Try the following code and reason about what is happening.

int main() {

char *heap = malloc(20);

*heap = 0x61;

printf("heap pointing to: 0x%x\n", *heap);

free(heap);

char *foo = malloc(20);

*foo = 0x62;

printf("foo pointing to: 0x%x\n", *foo);

/* danger ahead */

*heap = 0x63;

printf("or is it pointing to: 0x%x\n", *foo);

return 0;

}

If you experiment with freeing a data structure twice, you will most cer-
tainly run into a segmentation fault and a core dump. The reason is that
the underlying implementation of malloc() and free() assume things are
structured in a certain way and when they are not, things break. Remember
that by de�nition, the behavior is unde�ned, so you can not rely on that
things will crash when you test your system. We can look at the location
just before the allocated data structure to see what is going on (it will dif-
fer depending on what operating system you are using). We will here use
calloc() that will not only allocate the data structure but also set all its
elements to zero. Try the following, also print the memory map as before.

long *heap = (unsigned long*)calloc(40, sizeof(unsigned long));

printf("heap[2]: 0x%lx\n", heap[2]);

printf("heap[1]: 0x%lx\n", heap[1]);

printf("heap[0]: 0x%lx\n", heap[0]);

printf("heap[-1]: 0x%lx\n", heap[-1]);

printf("heap[-2]: 0x%lx\n", heap[-2]);

So we are cheating and access position -1 and -2. As you see, there is
some information there. Now change the size of the allocated data structure
and see what is happening. You might wonder how free() knows the size
of the object that it is about to free - any clues? Now look at this - we will
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free the allocated space, but then we cheat and print the content. Add the
following below the code we have above.

free(heap);

printf("heap[2]: 0x%lx\n", heap[2]);

printf("heap[1]: 0x%lx\n", heap[1]);

printf("heap[0]: 0x%lx\n", heap[0]);

printf("heap[-1]: 0x%lx\n", heap[-1]);

printf("heap[-2]: 0x%lx\n", heap[-2]);

Has something changed? Is it just garbage, or can you identify what it
is? Take a look at the memory map. What is happening?

4 A shared library

When we �rst printed the memory map, there were lots of things that you
had no clue of what they were. One after one, we have identi�ed the segments
for the code, data, strange kernel stu�, the stack, and the heap. There has
also been a lot of junk in the middle, between the heap and the stack. Some
of the segments are executable, some are writable, and some are described
by something similar to:

/lib/x86_64-linux-gnu/ld-2.23.so

All of the segments are allocated for shared libraries, either the code or
areas used for dynamic data structures. We have been using library proce-
dures for printing messages, �nding the process identi�er, allocating mem-
ory, etc. All of those routines are located somewhere in these segments. The
malloc() procedures keep information about the data structures that we
have allocated and freed, and if we mess this up by freeing things twice, of
course, things will break. If you do these experiments early in the course,
you might not know what we are talking about, but it will all become clear.

5 Summary

You can learn about how things work by running very small experiments.
You should test things for yourself and experience what you learn in the
course. It is one thing reading about a segmentation fault on a slide, and
another experience it by writing a small program. Remember the golden
rule of engineering:

If In Doubt, Try It Out!
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